Progress in silicon-based quantum computing

被引:61
|
作者
Clark, RG [1 ]
Brenner, R
Buehler, TM
Chan, V
Curson, NJ
Dzurak, AS
Gauja, E
Goan, HS
Greentree, AD
Hallam, T
Hamilton, AR
Hollenberg, LCL
Jamieson, DN
McCallum, JC
Milburn, GJ
O'Brien, JL
Oberbeck, L
Pakes, CI
Prawer, SD
Reilly, DJ
Ruess, FJ
Schofield, SR
Simmons, MY
Stanley, FE
Starrett, RP
Wellard, C
Yang, C
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Elect Engn & Telecommun, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[3] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia
[4] Univ Queensland, Dept Phys, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
关键词
quantum computer; silicon; single electron transistor; charge qubit; spin qubit;
D O I
10.1098/rsta.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
引用
收藏
页码:1451 / 1471
页数:21
相关论文
共 50 条
  • [41] A silicon-based nuclear spin quantum computer
    B. E. Kane
    [J]. Nature, 1998, 393 : 133 - 137
  • [42] A silicon-based surface code quantum computer
    Joe O’Gorman
    Naomi H Nickerson
    Philipp Ross
    John JL Morton
    Simon C Benjamin
    [J]. npj Quantum Information, 2
  • [43] A silicon-based quantum dot random laser
    Xu, Zhiyang
    Zhang, Hao
    Chen, Chao
    Aziz, Gohar
    Zhang, Jie
    Zhang, Xiaoxia
    Deng, Jinxiang
    Zhai, Tianrui
    Zhang, Xinping
    [J]. RSC ADVANCES, 2019, 9 (49) : 28642 - 28647
  • [44] New progress of silicon-based lasers-silicon hybrid laser
    State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
    [J]. Guangdianzi Jiguang, 2006, SUPPL. (30-33):
  • [45] Research progress of silicon and germanium quantum computing materials
    Zhang Jie-Yin
    Gao Fei
    Zhang Jian-Jun
    [J]. ACTA PHYSICA SINICA, 2021, 70 (21)
  • [46] Silicon-based qubit technology: progress and future prospects
    Uddin, Wasi
    Khan, Biswajit
    Dewan, Sheetal
    Das, Samaresh
    [J]. BULLETIN OF MATERIALS SCIENCE, 2022, 45 (01)
  • [47] Recent progress in silicon-based optical waveguide switches
    Li, Baojun
    [J]. OPTICAL TRANSMISSION, SWITCHING, AND SUBSYSTEMS V, PTS 1 AND 2, 2007, 6783
  • [48] Latest Research Progress in Silicon-Based Modulators (Invited)
    Han, Changhao
    Wang, Haoyu
    Shu, Haowen
    Qin, Jun
    Wang, Xingjun
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2024, 44 (15):
  • [49] Silicon-based qubit technology: progress and future prospects
    Wasi Uddin
    Biswajit Khan
    Sheetal Dewan
    Samaresh Das
    [J]. Bulletin of Materials Science, 2022, 45
  • [50] PROGRESS IN THE LOW-TEMPERATURE EPITAXY OF SILICON AND SILICON-BASED HETEROSTRUCTURES
    GREEN, ML
    [J]. JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1991, 43 (10): : 22 - 22