Progress in silicon-based quantum computing

被引:61
|
作者
Clark, RG [1 ]
Brenner, R
Buehler, TM
Chan, V
Curson, NJ
Dzurak, AS
Gauja, E
Goan, HS
Greentree, AD
Hallam, T
Hamilton, AR
Hollenberg, LCL
Jamieson, DN
McCallum, JC
Milburn, GJ
O'Brien, JL
Oberbeck, L
Pakes, CI
Prawer, SD
Reilly, DJ
Ruess, FJ
Schofield, SR
Simmons, MY
Stanley, FE
Starrett, RP
Wellard, C
Yang, C
机构
[1] Univ New S Wales, Sch Phys, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Elect Engn & Telecommun, Ctr Quantum Comp Technol, Sydney, NSW 2052, Australia
[3] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia
[4] Univ Queensland, Dept Phys, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
关键词
quantum computer; silicon; single electron transistor; charge qubit; spin qubit;
D O I
10.1098/rsta.2003.1221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We review progress at the Australian Centre for Quantum Computer Technology towards the fabrication and demonstration of spin qubits and charge qubits based on phosphorus donor atoms embedded in intrinsic silicon. Fabrication is being pursued via two complementary pathways: a 'top-down' approach for near-term production of few-qubit demonstration devices and a 'bottom-up' approach for large-scale qubit arrays with sub-nanometre precision. The 'top-down' approach employs a low-energy (keV) ion beam to implant the phosphorus atoms. Single-atom control during implantation is achieved by monitoring on-chip detector electrodes, integrated within the device structure. In contrast, the 'bottom-up' approach uses scanning tunnelling microscope lithography and epitaxial silicon overgrowth to construct devices at an atomic scale. In both cases, surface electrodes control the qubit using voltage pulses, and dual single-electron transistors operating near the quantum limit provide fast read-out with spurious-signal rejection.
引用
收藏
页码:1451 / 1471
页数:21
相关论文
共 50 条
  • [1] Silicon-based Quantum Computing: Scaling Strategies
    Gonzalez-Zalba, M. Fernando
    [J]. 2022 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2022,
  • [2] Toward a scalable, silicon-based quantum computing architecture
    Copsey, D
    Oskin, M
    Impens, F
    Metodiev, T
    Cross, A
    Chong, FT
    Chuang, IL
    Kubiatowicz, J
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (06) : 1552 - 1569
  • [3] New progress of silicon-based semiconductor quantum computation
    Wang Ning
    Wang Bao-Chuan
    Guo Guo-Ping
    [J]. ACTA PHYSICA SINICA, 2022, 71 (23)
  • [4] Research Progress on Silicon-based Quantum Dot Lasers
    Zhang, Nan
    Xie, Qijie
    Na, Quanxin
    Luo, Dengfeng
    Jia, Siqi
    Wang, Kai
    [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2023, 44 (11): : 2011 - 2026
  • [5] New progress of silicon-based semiconductor quantum computation
    Wang, Ning
    Wang, Bao-Chuan
    Guo, Guo-Ping
    [J]. Wuli Xuebao/Acta Physica Sinica, 2022, 71 (23):
  • [6] Silicon-based quantum dots have a path to scalable quantum computing
    Wilson, Mark
    [J]. PHYSICS TODAY, 2018, 71 (04) : 17 - 20
  • [7] Physical and technological challenges towards silicon-based quantum computing
    Apra, A.
    Ezzouch, R.
    Bertrand, B.
    Rambal, N.
    Catapano, E.
    Niebojewski, H.
    Bedecarrats, T.
    Hutin, L.
    Chaniron, E.
    Urdampilleta, M.
    Mizokuchi, R.
    Bassi, M.
    Piot, N.
    Vincent, E.
    Brun-Barriere, B.
    Zihlmann, S.
    Schmitt, V
    Dumur, E.
    Jehl, X.
    Maurand, R.
    Vinet, M.
    Meunier, T.
    De Franceschi, S.
    [J]. 2021 SILICON NANOELECTRONICS WORKSHOP (SNW), 2021, : 3 - 4
  • [8] Scaling silicon-based quantum computing using CMOS technology
    Gonzalez-Zalba, M. F.
    de Franceschi, S.
    Charbon, E.
    Meunier, T.
    Vinets, M.
    Dzurak, A. S.
    [J]. NATURE ELECTRONICS, 2021, 4 (12) : 872 - 884
  • [9] Scaling silicon-based quantum computing using CMOS technology
    M. F. Gonzalez-Zalba
    S. de Franceschi
    E. Charbon
    T. Meunier
    M. Vinet
    A. S. Dzurak
    [J]. Nature Electronics, 2021, 4 : 872 - 884
  • [10] Research progress of quantum dot enhanced silicon-based photodetectors
    Zhu Xiao-xiu
    Ge Yong
    Li Jian-jun
    Zhao Yue-jin
    Zou Bing-suo
    Zhong Hai-zheng
    [J]. CHINESE OPTICS, 2020, 13 (01): : 62 - 74