Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard-Jones fluids by non-equilibrium molecular dynamic simulation

被引:8
|
作者
Asad, Ahmed [1 ]
Wu Jiang-Tao [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
self-diffusion coefficient; non-equilibrium molecular dynamic simulation; Lennard-Jones fluid; critical dynamics; HARD-SPHERE FLUID; EQUATION-OF-STATE; TRANSPORT-COEFFICIENTS; SUPERCRITICAL FLUIDS; DENSITY-DEPENDENCE; LIQUID WATER; TEMPERATURE; VISCOSITY;
D O I
10.1088/1674-1056/20/10/106601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use non-equilibrium molecular dynamics simulations to calculate the self-diffusion coefficient, D, of a Lennard-Jones fluid over a wide density and temperature range. The change in self-diffusion coefficient with temperature decreases by increasing density. For density rho* = rho sigma(3) = 0.84 we observe a peak at the value of the self-diffusion coefficient and the critical temperature T* = kT/epsilon = 1.25. The value of the self-diffusion coefficient strongly depends on system size. The data of the self-diffusion coefficient are fitted to a simple analytic relation based on hydrodynamic arguments. This correction scales as N-alpha, where alpha is an adjustable parameter and N is the number of particles. It is observed that the values of alpha < 1 provide quite a good correction to the simulation data. The system size dependence is very strong for lower densities, but it is not as strong for higher densities. The self-diffusion coefficient calculated with non-equilibrium molecular dynamic simulations at different temperatures and densities is in good agreement with other calculations from the literature.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Critical anomaly and finite size scaling of the self-diffusion coefficient for Lennard Jones fluids by non-equilibrium molecular dynamic simulation
    Ahmed Asad
    吴江涛
    Chinese Physics B, 2011, 20 (10) : 362 - 367
  • [2] Molecular dynamics simulation data of self-diffusion coefficient for Lennard-Jones chain fluids
    Reis, RA
    Silva, FC
    Nobrega, R
    Oliveira, JV
    Tavares, FW
    FLUID PHASE EQUILIBRIA, 2004, 221 (1-2) : 25 - 33
  • [3] SELF-DIFFUSION COEFFICIENTS OF LENNARD-JONES FLUIDS
    TANKESHWAR, K
    PATHAK, KN
    RANGANATHAN, S
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (34): : 5749 - 5757
  • [4] Temperature and density dependence of the self-diffusion coefficient and Mori coefficients of Lennard-Jones fluids by molecular dynamics simulation
    Nuevo, MJ
    Morales, JJ
    Heyes, DM
    PHYSICAL REVIEW E, 1997, 55 (04): : 4217 - 4224
  • [5] A molecular dynamics simulation study of the self-diffusion coefficient and viscosity of the Lennard-Jones fluid
    Meier, K
    Laesecke, A
    Kabelac, S
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (01) : 161 - 173
  • [6] The self-diffusion coefficient in metastable states of a Lennard-Jones fluid
    Baidakov, V. G.
    Kozlova, Z. R.
    CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) : 23 - 27
  • [7] Machine learning prediction of self-diffusion in Lennard-Jones fluids
    Allers, Joshua P.
    Harvey, Jacob A.
    Garzon, Fernando H.
    Alam, Todd M.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (03):
  • [8] Self-diffusion coefficient of two-center Lennard-Jones fluids: Molecular simulations and free volume theory
    Nasrabad, Afshin Eskandari
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (02):
  • [9] Effect of the computational domain size and shape on the self-diffusion coefficient in a Lennard-Jones liquid
    Kikugawa, Gota
    Ando, Shotaro
    Suzuki, Jo
    Naruke, Yoichi
    Nakano, Takeo
    Ohara, Taku
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (02):
  • [10] Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
    Yamaguchi, T
    Kimura, Y
    Hirota, N
    MOLECULAR PHYSICS, 1998, 94 (03) : 527 - 537