Evaluation of an Externally Trained Deep Learning-Based Auto-Segmentation Software in the Process of Artificial Intelligence-Assisted Radiation Treatment Planning for Thoracic Cancers

被引:0
|
作者
Pan, M. [1 ,2 ]
Serre, L. [2 ,3 ]
Yousuf, J. [2 ]
Hirmiz, K. J. [2 ]
Michie, C. [2 ]
Brown, L. [2 ]
Agapito, J. [2 ,3 ]
机构
[1] Univ Western Ontario, Schulich Sch Med & Dent, London, ON, Canada
[2] Windsor Reg Hosp Canc Program, Windsor, ON, Canada
[3] Univ Windsor, Windsor, ON, Canada
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2223
引用
收藏
页码:E102 / E102
页数:1
相关论文
共 48 条
  • [21] Implementation of Deep Learning-Based Auto-Segmentation for Radiotherapy Planning Structures: A Multi-Center Workflow Study
    Wong, J.
    Huang, V.
    Wells, D. M.
    Giambattista, J. A.
    Giambattista, J.
    Kolbeck, C.
    Otto, K.
    Alexander, A. S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S101 - S101
  • [22] Evaluation of Deep Learning-Based Auto-Segmentation of Target Volume and Normal Organs in Breast Cancer Patients
    Chung, S. Y.
    Chang, J. S.
    Chang, Y.
    Choi, B. S.
    Chun, J.
    Kim, J. S.
    Kim, Y. B.
    MEDICAL PHYSICS, 2020, 47 (06) : E613 - E614
  • [23] IMPLEMENTATION OF DEEP LEARNING-BASED AUTO-SEGMENTATION FOR RADIOTHERAPY PLANNING STRUCTURES: A MULTI-CENTER WORKFLOW STUDY
    Wong, Jordan
    Huang, Vicky
    Wells, Derek
    Giambattista, Joshua
    Giambattista, Jonathan
    Kolbeck, Carter
    Otto, Karl
    Alexander, Abraham
    RADIOTHERAPY AND ONCOLOGY, 2020, 150 : S14 - S15
  • [24] Evaluation of deep learning-based target auto-segmentation for Magnetic Resonance Imaging-guided cervix brachytherapy
    Simoes, Rita
    Rijkmans, Eva C.
    Schaake, Eva E.
    Nowee, Marlies E.
    van der Velden, Sandra
    Janssen, Tomas
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 32
  • [25] Evaluation of Deep Learning-Based Auto-Segmentation of Target Volume and Organs-at-Risk in Breast Cancer Patients
    Chung, S. Y.
    Chang, J. S.
    Chang, Y.
    Choi, B. S.
    Chun, J.
    Kim, J. S.
    Kim, Y. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E779 - E779
  • [26] A Feasibility Study of Deep Learning-Based Auto-Segmentation Directly Used in VMAT Planning Design and Optimization for Cervical Cancer
    Chen, Along
    Chen, Fei
    Li, Xiaofang
    Zhang, Yazhi
    Chen, Li
    Chen, Lixin
    Zhu, Jinhan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [27] Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy
    Takagi, Hisamichi
    Takeda, Ken
    Kadoya, Noriyuki
    Inoue, Koki
    Endo, Shiki
    Takahashi, Noriyoshi
    Yamamoto, Takaya
    Umezawa, Rei
    Jingu, Keiichi
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (04) : 819 - 826
  • [28] Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy
    Gibbons, Eddie
    Hoffmann, Matthew
    Westhuyzen, Justin
    Hodgson, Andrew
    Chick, Brendan
    Last, Andrew
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2023, 70 : 15 - 25
  • [29] Feasibility Study of a Deep Learning-Based Model Trained On Adults for Auto-Segmentation of Head-And-Neck OARs in Pediatric CT Images
    Shen, Z.
    Olch, A.
    Bai, N.
    Wong, K.
    Chang, E.
    Yang, W.
    MEDICAL PHYSICS, 2022, 49 (06) : E840 - E841
  • [30] Custom-Trained Deep Learning-Based Auto-Segmentation for Male Pelvic Iterative CBCT on C-Arm Linear Accelerators
    Tegtmeier, Riley C.
    Kutyreff, Christopher J.
    Smetanick, Jennifer L.
    Hobbis, Dean
    Laughlin, Brady S.
    Toesca, Diego A. Santos
    Clouser, Edward L.
    Rong, Yi
    PRACTICAL RADIATION ONCOLOGY, 2024, 14 (05) : e383 - e394