Optical soliton propagation patterns in anti-cubic nonlinear metamaterials by a unified integral approach

被引:1
|
作者
Yang, Shu [1 ]
机构
[1] Civil Aviat Flight Univ China, Dept ATM, Guanghan 618307, Peoples R China
来源
OPTIK | 2021年 / 244卷
关键词
Optical soliton; Metamaterial; Nonlinear Schrodinger equation; Trial equation method; TRAVELING-WAVE SOLUTIONS; TRIAL EQUATION METHOD; DIRECTIONAL-COUPLERS; SINGULAR SOLITONS; CLASSIFICATIONS; PHYSICS; PULSES; FIBERS; LAW;
D O I
10.1016/j.ijleo.2021.167559
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical propagation in anti-cubic nonlinear optical metamaterials is investigated by solving the higher order nonlinear Schrodinger equation. A unified integral approach is applied to the governing equation. A complete list of exact envelope patterns is obtained to show the richness of the propagation patterns, which include solitons, singular and quasi-periodic patterns and double periodic patterns. In practice, by adjusting or controlling the physical parameters, the needed pattern can be obtained.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Optical solitons and conservation laws with anti-cubic nonlinearity
    Triki, Houria
    Kara, Abdul H.
    Biswas, Anjan
    Moshokoa, Seithuti P.
    Belic, Milivoj
    [J]. OPTIK, 2016, 127 (24): : 12056 - 12062
  • [42] Optical solitons with anti-cubic nonlinearity by mapping methods
    Krishnan, E., V
    Biswas, Anjan
    Zhou, Qin
    Babatin, M. M.
    [J]. OPTIK, 2018, 170 : 520 - 526
  • [43] Soliton propagation in nonlinear magnetic metamaterials with microscopic disorder
    Tsurumi, Takeya
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (07)
  • [44] Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity
    Guoan Xu
    Jibin Li
    Yi Zhang
    [J]. Qualitative Theory of Dynamical Systems, 2022, 21
  • [45] Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity
    Xu, Guoan
    Li, Jibin
    Zhang, Yi
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [46] Envelope solitons of nonlinear Schrodinger equation with an anti-cubic nonlinearity
    Fedele, R
    Schamel, H
    Karpman, VI
    Shukla, PK
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (04): : 1169 - 1173
  • [47] Optical wave profiles for the higher order cubic-quartic Bragg-gratings with anti-cubic nonlinear form
    Shahzad, Tahir
    Baber, Muhammad Zafarullah
    Sulaiman, Tukur Abdulkadir
    Ahmad, Muhammad Ozair
    Yasin, Muhammad Waqas
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (01)
  • [48] A variety of structures of optical solitons for the nonlinear Schrödinger equation with generalized anti-cubic nonlinearity
    Saima Arshed
    Ghazala Akram
    Maasoomah Sadaf
    Iqra Latif
    Muhammad Mohsin Yasin
    [J]. Optical and Quantum Electronics, 2023, 55
  • [49] Optical wave profiles for the higher order cubic-quartic Bragg-gratings with anti-cubic nonlinear form
    Tahir Shahzad
    Muhammad Zafarullah Baber
    Tukur Abdulkadir Sulaiman
    Muhammad Ozair Ahmad
    Muhammad Waqas Yasin
    [J]. Optical and Quantum Electronics, 2024, 56
  • [50] Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry
    Kumar, Sachin
    Malik, Sandeep
    Biswas, Anjan
    Yildirim, Yakup
    Alshomrani, Ali Saleh
    Belic, Milivoj R.
    [J]. OPTIK, 2020, 206