DISCRETE SECOND-ORDER EULER-POINCARE EQUATIONS. APPLICATIONS TO OPTIMAL CONTROL

被引:10
|
作者
Colombo, Leonardo [1 ]
Jimenez, Fernando [1 ]
Martin de Diego, David [1 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid 28049, Spain
关键词
Optimal control; discrete mechanics; Euler-Poincare equations; mechanics on Lie groups; OPTIMAL ATTITUDE-CONTROL; MECHANICS;
D O I
10.1142/S0219887812500375
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we will discuss some new developments in the design of numerical methods for optimal control problems of Lagrangian systems on Lie groups. We will construct these geometric integrators using discrete variational calculus on Lie groups, deriving a discrete version of the second-order Euler-Lagrange equations. Interesting applications as, for instance, a discrete derivation of the Euler-Poincare equations for second-order Lagrangians and its application to optimal control of a rigid body, and of a Cosserat rod are shown at the end of the paper.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] IMPLICIT METHODS OF SECOND-ORDER ACCURACY FOR THE EULER EQUATIONS.
    Lerat, A.
    1600, (23):
  • [2] Discrete Euler-Poincare and Lie-Poisson equations
    Marsden, JE
    Pekarsky, S
    Shkoller, S
    NONLINEARITY, 1999, 12 (06) : 1647 - 1662
  • [3] Discrete Lagrangian reduction, discrete Euler-Poincare equations, and semidirect products
    Bobenko, AI
    Suris, YB
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) : 79 - 93
  • [4] The Euler-Poincare equations and semidirect products with applications to continuum theories
    Holm, DD
    Marsden, JE
    Ratiu, TS
    ADVANCES IN MATHEMATICS, 1998, 137 (01) : 1 - 81
  • [5] EULER-POINCARE PROPERTIES OF FIRST ORDER
    MALLIAVI.MP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (10): : 517 - &
  • [6] OPTIMAL CONTROL FOR SECOND ORDER SEMILINEAR HYPERBOLIC EQUATIONS.
    Tiba, D.
    Control, theory and advanced technology, 1987, 3 (01): : 33 - 43
  • [7] Euler-Poincare reduction for discrete field theories
    Vankerschaver, Joris
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [8] The Euler-Poincare equations and double bracket dissipation
    Bloch, A
    Krishnaprasad, PS
    Marsden, JE
    Ratiu, TS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) : 1 - 42
  • [9] A simplified second-order Gaussian Poincare inequality in discrete setting with applications
    Eichelsbacher, Peter
    Rednoss, Benedikt
    Thaele, Christoph
    Zheng, Guangqu
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 271 - 302
  • [10] Variational order for forced Lagrangian systems II. Euler-Poincare equations with forcing
    Martin de Diego, D.
    Martin de Almagro, R. T. Sato
    NONLINEARITY, 2020, 33 (08) : 3709 - 3738