Lagrangian systems on Lie groups;
difference equations;
Lagrangian reduction;
discretization;
D O I:
10.1023/A:1007654605901
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
A discrete version of Lagrangian reduction is developed within the context of discrete time Lagrangian systems on G x G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. Within this context, the reduction of the discrete Euler-Lagrange equations is shown to lead to the so-called discrete Euler-Poincare equations. A constrained variational principle is derived. The Legendre transformation of the discrete Euler-Poincare equations leads to discrete Hamiltonian (Lie-Poisson) systems on a dual space to a semiproduct Lie algebra.
机构:
Univ Bordeaux 1, Inst Math Bordeaux, UMR 5251, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
Arnaudon, Marc
Chen, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, PortugalUniv Bordeaux 1, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
Chen, Xin
Cruzeiro, Ana Bela
论文数: 0引用数: 0
h-index: 0
机构:
GFMUL, P-1049001 Lisbon, Portugal
UL, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, PortugalUniv Bordeaux 1, Inst Math Bordeaux, UMR 5251, F-33405 Talence, France
机构:
Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15, Madrid 28049, SpainInst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15, Madrid 28049, Spain
Martin de Diego, D.
Martin de Almagro, R. T. Sato
论文数: 0引用数: 0
h-index: 0
机构:
Univ Erlangen Nurnberg, Chair Appl Dynam, Immerwahrstr 1, D-91058 Erlangen, GermanyInst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15, Madrid 28049, Spain