Phase-space Wave Functions of Harmonic Oscillator in Nanomaterials

被引:0
|
作者
Lu Jun [1 ]
机构
[1] Beijing Union Univ, Dept Foundat Sci, Beijing 100101, Peoples R China
来源
关键词
phase space; wave function; harmonic oscillator; nanomaterial; QUANTUM-MECHANICAL REPRESENTATION;
D O I
10.4028/www.scientific.net/AMR.233-235.2154
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this paper, we solve the rigorous solutions of the stationary Schrodinger equations for the harmonic oscillator in nanomaterials within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. We obtain the phase-space eigenfunctions of the harmonic oscillator. We also discuss the character of wave function and the "Fourier-like" projection transformations in phase space.
引用
收藏
页码:2154 / 2157
页数:4
相关论文
共 50 条
  • [31] The Harmonic Oscillator Influenced by Gravitational Wave in Noncommutative Quantum Phase Space
    Rehimhaji Yakup
    Sayipjamal Dulat
    Kang Li
    Mamatabdulla Hekim
    International Journal of Theoretical Physics, 2014, 53 : 1404 - 1414
  • [32] FROM PHASE-SPACE PROBABILITY FUNCTIONS TO WAVE-FUNCTIONS - COMMENTS ON MIZRAHIS PAPER
    LALOVIC, D
    DAVIDOVIC, DM
    TANCIC, AR
    PHYSICA A, 1994, 208 (3-4): : 533 - 534
  • [33] DISCRETIZATION OF THE PHASE-SPACE FOR A Q-DEFORMED HARMONIC-OSCILLATOR WITH Q A ROOT OF UNITY
    BONATSOS, D
    DASKALOYANNIS, C
    ELLINAS, D
    FAESSLER, A
    PHYSICS LETTERS B, 1994, 331 (1-2) : 150 - 156
  • [34] Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space
    S. Hassanabadi
    P. Sedaghatnia
    W. S. Chung
    B. C. Lütfüoğlu
    J. Kr̆iz̆
    H. Hassanabadi
    The European Physical Journal Plus, 138
  • [35] Exact solution to two dimensional Dunkl harmonic oscillator in the Non-Commutative phase-space
    Hassanabadi, S.
    Sedaghatnia, P.
    Chung, W. S.
    Lutfuoglu, B. C.
    Kriz, J.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (04):
  • [36] Parametrized discrete phase-space functions
    Opatrny, T
    Welsch, DG
    Buzek, V
    PHYSICAL REVIEW A, 1996, 53 (06): : 3822 - 3835
  • [37] On marginalization of phase-space distribution functions
    Wlodarz, JJ
    PHYSICS LETTERS A, 1999, 264 (01) : 18 - 21
  • [38] PHASE-SPACE FUNCTIONS AND CORRESPONDENCE RULES
    SPRINGBORG, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : 535 - 542
  • [39] On phase-space integrals with Heaviside functions
    Baranowski, Daniel
    Delto, Maximilian
    Melnikov, Kirill
    Wang, Chen-Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)
  • [40] QUANTUM PHASE-SPACE DISTRIBUTION FUNCTIONS
    RUGGERI, G
    ACTA CIENTIFICA VENEZOLANA, 1971, 22 : 34 - &