Bayesian Optimization using Pseudo-Points

被引:0
|
作者
Qian, Chao [1 ]
Xiong, Hang [2 ]
Xue, Ke [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[2] Univ Sci & Technol China, Hefei 230027, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian optimization (BO) is a popular approach for expensive black-box optimization, with applications including parameter tuning, experimental design, and robotics. BO usually models the objective function by a Gaussian process (GP), and iteratively samples the next data point by maximizing an acquisition function. In this paper, we propose a new general framework for BO by generating pseudo-points (i.e., data points whose objective values are not evaluated) to improve the GP model. With the classic acquisition function, i.e., upper confidence bound (UCB), we prove that the cumulative regret can be generally upper bounded. Experiments using UCB and other acquisition functions, i.e., probability of improvement (PI) and expectation of improvement (EI), on synthetic as well as real-world problems clearly show the advantage of generating pseudo-points.
引用
收藏
页码:3044 / 3050
页数:7
相关论文
共 50 条
  • [31] Sampling designs on stream networks using the pseudo-Bayesian approach
    Falk, Matthew G.
    McGree, James M.
    Pettitt, Anthony N.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2014, 21 (04) : 751 - 773
  • [32] PSEUDO-BAYESIAN AND BAYESIAN-APPROACH TO AUDITING
    ANDREWS, RW
    SMITH, TMF
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1983, 32 (1-2) : 124 - 126
  • [33] Hyperparameter Optimization of Bayesian Neural Network Using Bayesian Optimization and Intelligent Feature Engineering for Load Forecasting
    Zulfiqar, M.
    Gamage, Kelum A. A.
    Kamran, M.
    Rasheed, M. B.
    SENSORS, 2022, 22 (12)
  • [34] Optimization of forging preforms by using Pseudo Inverse Approach
    Halouani, A.
    Li, Y. M.
    Abbes, B.
    Guo, Y. Q.
    Meng, F. J.
    Labergere, C.
    Lafon, P.
    MATERIAL FORMING - ESAFORM 2012, PTS 1 & 2, 2012, 504-506 : 613 - +
  • [35] Laser material processing optimization using bayesian optimization: a generic tool
    Menold, Tobias
    Onuseit, Volkher
    Buser, Matthias
    Haas, Michael
    Baer, Nico
    Michalowski, Andreas
    LIGHT-ADVANCED MANUFACTURING, 2024, 5 (03):
  • [36] POINTS OF SIGNIFICANCE Bayesian networks
    Puga, Jorge Lopez
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2015, 12 (09) : 799 - 800
  • [37] Characterization and Optimization of Pearlite Microstructure Using Persistent Homology and Bayesian Optimization
    Kiyomura, Kazuki
    Wang, Zhi-Lei
    Ogawa, Toshio
    Adachi, Yoshitaka
    ISIJ INTERNATIONAL, 2022, 62 (02) : 307 - 312
  • [38] Noisy Multiobjective Black-Box Optimization using Bayesian Optimization
    Wang, Hongyan
    Xu, Hua
    Yuan, Yuan
    Deng, Junhui
    Sun, Xiaomin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 239 - 240
  • [39] Discussion points for Bayesian inference
    Aczel, Balazs
    Hoekstra, Rink
    Gelman, Andrew
    Wagenmakers, Eric-Jan
    Klugkist, Irene G.
    Rouder, Jeffrey N.
    Vandekerckhove, Joachim
    Lee, Michael D.
    Morey, Richard D.
    Vanpaemel, Wolf
    Dienes, Zoltan
    van Ravenzwaaij, Don
    NATURE HUMAN BEHAVIOUR, 2020, 4 (06) : 561 - 563
  • [40] Discussion points for Bayesian inference
    Balazs Aczel
    Rink Hoekstra
    Andrew Gelman
    Eric-Jan Wagenmakers
    Irene G. Klugkist
    Jeffrey N. Rouder
    Joachim Vandekerckhove
    Michael D. Lee
    Richard D. Morey
    Wolf Vanpaemel
    Zoltan Dienes
    Don van Ravenzwaaij
    Nature Human Behaviour, 2020, 4 : 561 - 563