Textured image segmentation using multiresolution Markov Random Fields and a two-component texture model

被引:0
|
作者
Li, CT
Wilson, R
机构
关键词
Markov random fields; texture segmentation; deformable templates;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a multiresolution Markov Random Field (MMRF) model for segmenting textured images. The Multiresolution Fourier Transform (MFT) is used to provide a set of spatially localised texture descriptors, which are based on a two-component model of texture, in which one component is a deformation, representing the structural or deterministic elements and the other is a stochastic one. Stochastic relaxation labelling is adopted to maximise the likelihood and assign the class label with highest probability to the block (site) being visited. Class information is propagated from low spatial resolution to high spatial resolution, via appropriate modifications to the interaction energies defining the field, to minimise class-position uncertainty. Experiments on the segmentation of natural textures are used to show the potential of the method.
引用
收藏
页码:425 / 430
页数:6
相关论文
共 50 条
  • [1] Texture segmentation of SAR image using multiresolution pairwise Markov model
    Liu, Bao-Li
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 1348 - 1351
  • [2] Texture Segmentation of Jacquard Fabric Image Based on Multiresolution Markov Random Field
    Tong, Youcheng
    Zhang, Yang
    Yao, Junzhou
    [J]. ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION II, PTS 1 AND 2, 2012, 102-102 : 496 - +
  • [3] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [4] Texture segmentation using Gaussian Markov Random Fields and LEGION
    Cesmeli, E
    Wang, DL
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1529 - 1534
  • [5] Textured image segmentation based on spatial dependence using a markov random field model
    Schwartz, William Robson
    Pedrini, Helio
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 2449 - +
  • [6] Unsupervised image segmentation using Markov Random Fields
    Sengur, Abdulkadir
    Turkoglu, Ibrahim
    Ince, M. Cevdet
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 158 - 167
  • [7] A Markov random field image segmentation model for color textured images
    Kato, Zoltan
    Pong, Ting-Chuen
    [J]. IMAGE AND VISION COMPUTING, 2006, 24 (10) : 1103 - 1114
  • [8] Markov Random Fields in Image Segmentation
    Kato, Zoltan
    Zerubia, Josiane
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2011, 5 (1-2): : 1 - 155
  • [9] PET image segmentation using a Gaussian mixture model and Markov random fields
    Layer T.
    Blaickner M.
    Knäusl B.
    Georg D.
    Neuwirth J.
    Baum R.P.
    Schuchardt C.
    Wiessalla S.
    Matz G.
    [J]. EJNMMI Physics, 2 (1) : 1 - 15
  • [10] Fusion of visual cues of intensity and texture in Markov random fields image segmentation
    Dawoud, A.
    Netchaev, A.
    [J]. IET COMPUTER VISION, 2012, 6 (06) : 603 - 609