Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications

被引:7
|
作者
Saleem, Iram [1 ,2 ]
Tilakaratne, Buddhi P. [1 ,2 ,4 ]
Li, Yang [3 ]
Bao, Jiming [3 ]
Wijesundera, Dharshana N. [1 ,2 ]
Chu, Wei-Kan [1 ,2 ]
机构
[1] Univ Houston, Dept Phys, Houston, DC 77204 USA
[2] Univ Houston, Texas Ctr Superconduct, Houston, DC 77204 USA
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[4] Penn State Univ, Dept Radiol, Philadelphia, PA 16801 USA
基金
美国国家科学基金会;
关键词
Localized surface plasmon resonance; Ion beam nano-fabrication; Cluster ion beam self-assembly; Nano ripple array; ENHANCED RAMAN-SPECTROSCOPY; SOLAR-CELLS; SURFACE; NANOPARTICLES; RESONANCE; IMPLANTATION; SILICON; DOTS;
D O I
10.1016/j.nimb.2016.05.002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report a high-throughput, single-step method for fabricating rippled plasmonic nanostructure arrays via self-assembly induced by oblique angle cluster ion beam irradiation of metal surfaces. This approach does not require lithographic or chemical processes and has the prominent advantage of possible large surface area coverage and applicability to different starting materials. The polarization dependent plasmonic property of the gold nano-ripple is due to their one dimension structure. The localized plasmon resonance frequency of synthesized nano-ripple arrays is tunable by changing nano-ripple dimensions that can be engineered by changing the cluster ion beam irradiation parameters. In this specific case presented, using 30 keV Ar-gas cluster ion beam, we fabricate gold nano-ripple arrays that show localized plasmon resonance in the visible range through near IR range, tunable by varying cluster ion irradiation fluence. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [41] APPLICATIONS OF ION-BEAM-ASSISTED DEPOSITION
    COLLIGON, JS
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 139 : 199 - 206
  • [42] Quantum electrodynamics and plasmonic resonance of metallic nanostructures
    Zhang, Mingliang
    Xiang, Hongping
    Zhang, Xu
    Lu, Gang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (15)
  • [43] On the physics and design of plasmonic anapoles in metallic nanostructures
    Hassan, Emadeldeen
    Eviyukhin, Audrey B.
    Cala Lesina, Antonio
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 507 - 507
  • [44] Controlling plasmonic resonances in binary metallic nanostructures
    Gu, Ying
    Li, Jia
    Martin, Olivier J. F.
    Gong, Qihuang
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (11)
  • [45] Polymeric photovoltaics with various metallic plasmonic nanostructures
    Zeng, Beibei
    Gan, Qiaoqiang
    Kafafi, Zakya H.
    Bartoli, Filbert J.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
  • [46] Plasmonic enhancement characteristics of multilayered metallic nanostructures
    Evanoff, David
    Butcher, Emily
    Cook, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [47] Periodic Metallic Nanostructures as Plasmonic Chemical Sensors
    Valsecchi, Chiara
    Brolo, Alexandre G.
    LANGMUIR, 2013, 29 (19) : 5638 - 5649
  • [48] Fabrication of three-dimensional nanostructures by focused ion beam milling
    Tjerkstra, R. W.
    Segerink, F. B.
    Kelly, J. J.
    Vos, W. L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (03): : 973 - 977
  • [49] Gas cluster ion beam technology for nano-fabrication
    Toyoda, Noriaki
    Yamada, Isao
    SMART & ADAPTIVE OPTICS, 2013, 82 : 1 - 8
  • [50] Fabrication of superparamagnetic permalloy nanostructures in ZnO matrix by ion beam sputtering
    Mahendra, A.
    Gupta, P.
    Murmu, P. P.
    Trompetter, W. J.
    Kennedy, J.
    MATERIALS TODAY-PROCEEDINGS, 2021, 36 : 582 - 586