A Bayesian Modelling of Wildfires in Portugal

被引:5
|
作者
Silva, Giovani L. [1 ,2 ]
Soares, Paulo [1 ,2 ]
Marques, Susete [5 ,6 ]
Ines Dias, M. [3 ,4 ]
Manuela Oliveira, M. [3 ,4 ]
Borges, Jose G. [5 ,6 ]
机构
[1] Univ Lisbon, Inst Super Tecn, CEAUL, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Dept Math, P-1049001 Lisbon, Portugal
[3] Univ Evora, CIMA, Evora, Portugal
[4] Univ Evora, Dept Math, Evora, Portugal
[5] Univ Lisbon, Inst Super Agron, FRC, Lisbon, Portugal
[6] Univ Lisbon, Inst Super Agron, Dept Nat Resources Environm & Terr, Lisbon, Portugal
来源
关键词
FOREST-FIRES; BETA REGRESSION; IGNITION;
D O I
10.1007/978-3-319-16118-1_38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the last decade wildfires became a serious problem in Portugal due to socieconomic and climate change trends. In order to analyse wildfire data, we employ beta regression for modelling the proportion of burned wild area, under a Bayesian perspective. Our main goal is to find out fire risk factors that influence the proportion of area burned and what may make a wild area susceptible or resistant to fire. Then, we analyse wildfire data in Portugal during 1990-1994 through Bayesian normal and beta regression models that use Markov chain Monte Carlo methods for estimating quantities of interest.
引用
收藏
页码:723 / 733
页数:11
相关论文
共 50 条
  • [31] Bayesian statistics and modelling
    [J]. Nature Reviews Methods Primers, 1
  • [32] Bayesian Psychometric Modelling
    Hutchison, Dougal
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2018, 181 (02) : 550 - 550
  • [33] Bayesian kinetic modelling
    Gunn, Roger
    Schmid, V.
    Whitcher, B.
    Cunningham, V.
    [J]. NEUROIMAGE, 2006, 31 : T71 - T71
  • [34] Bayesian statistics and modelling
    van de Schoot, Rens
    Depaoli, Sarah
    King, Ruth
    Kramer, Bianca
    Maertens, Kaspar
    Tadesse, Mahlet C.
    Vannucci, Marina
    Gelman, Andrew
    Veen, Duco
    Willemsen, Joukje
    Yau, Christopher
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [35] Bayesian partition modelling
    Denison, DGT
    Adams, NM
    Holmes, CC
    Hand, DJ
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) : 475 - 485
  • [36] Wildfires effects on organic matter of soils from Caramulo Mountain (Portugal): environmental implications
    Ribeiro, Joana
    Marques, Jorge Espinha
    Mansilha, Catarina
    Flores, Deolinda
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (01) : 819 - 831
  • [37] Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires
    Parente, J.
    Pereira, M. G.
    Amraoui, M.
    Fischer, E. M.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 631-632 : 534 - 549
  • [38] Space-time clustering analysis performance of an aggregated dataset: The case of wildfires in Portugal
    Pereira, Mario G.
    Caramelo, Liliana
    Orozco, Carmen Vega
    Costa, Ricardo
    Tonini, Marj
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 72 : 239 - 249
  • [39] Modelling tidal currents on the coast of Portugal
    Sauvaget, P
    David, E
    Soares, CG
    [J]. COASTAL ENGINEERING, 2000, 40 (04) : 393 - 409
  • [40] Wildfires as a major driver of landscape dynamics in three fire-prone areas of Portugal
    Silva, Joaquim S.
    Vaz, Pedro
    Moreira, Francisco
    Catry, Filipe
    Rego, Francisco C.
    [J]. LANDSCAPE AND URBAN PLANNING, 2011, 101 (04) : 349 - 358