The Coulomb interaction in van der Waals heterostructures

被引:31
|
作者
Huang, Le [1 ]
Zhong, MianZeng [2 ]
Deng, HuiXiong [2 ]
Li, Bo [4 ]
Wei, ZhongMing [2 ]
Li, JingBo [1 ,2 ]
Wei, SuHuai [3 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructures; gaint Stark effect; Coulomb interaction; charge transfer; TOTAL-ENERGY CALCULATIONS; BLACK PHOSPHORUS; BANDGAP;
D O I
10.1007/s11433-018-9294-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +
  • [32] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [33] Picosecond photoresponse in van der Waals heterostructures
    Massicotte M.
    Schmidt P.
    Vialla F.
    Schädler K.G.
    Reserbat-Plantey A.
    Watanabe K.
    Taniguchi T.
    Tielrooij K.J.
    Koppens F.H.L.
    Nature Nanotechnology, 2016, 11 (1) : 42 - 46
  • [34] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [35] Van der Waals interaction of membranes
    Fenzl, W.
    Zeitschrift fuer Physik B: Condensed Matter, 97 (02):
  • [36] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [37] Optically Active MXenes in Van der Waals Heterostructures
    Purbayanto, Muhammad A. K.
    Chandel, Madhurya
    Birowska, Magdalena
    Rosenkranz, Andreas
    Jastrzebska, Agnieszka M.
    ADVANCED MATERIALS, 2023, 35 (42)
  • [38] Evidence for moire excitons in van der Waals heterostructures
    Kha Tran
    Moody, Galan
    Wu, Fengcheng
    Lu, Xiaobo
    Choi, Junho
    Kim, Kyounghwan
    Rai, Amritesh
    Sanchez, Daniel A.
    Quan, Jiamin
    Singh, Akshay
    Embley, Jacob
    Zepeda, Andre
    Campbell, Marshall
    Autry, Travis
    Taniguchi, Takashi
    Watanabe, Kenji
    Lu, Nanshu
    Banerjee, Sanjay K.
    Silverman, Kevin L.
    Kim, Suenne
    Tutuc, Emanuel
    Yang, Li
    MacDonald, Allan H.
    Li, Xiaoqin
    NATURE, 2019, 567 (7746) : 71 - +
  • [39] Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces
    Jeon, Jaeho
    Choi, Haeju
    Baek, Sungpyo
    Choi, Seunghyuk
    Cho, Jeong Ho
    Lee, Sungjoo
    APPLIED SURFACE SCIENCE, 2021, 544