The Coulomb interaction in van der Waals heterostructures

被引:31
|
作者
Huang, Le [1 ]
Zhong, MianZeng [2 ]
Deng, HuiXiong [2 ]
Li, Bo [4 ]
Wei, ZhongMing [2 ]
Li, JingBo [1 ,2 ]
Wei, SuHuai [3 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
[4] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
van der Waals heterostructures; gaint Stark effect; Coulomb interaction; charge transfer; TOTAL-ENERGY CALCULATIONS; BLACK PHOSPHORUS; BANDGAP;
D O I
10.1007/s11433-018-9294-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The giant Stark effect (GSE) in a set of van der Waals (vdW) heterostructures is studied using first-principles methods. A straightforward model based on quasi-Fermi levels is proposed to describe the influence of an external perpendicular electric field on both band gap and band edges. Although a general linear GSE is observed, which is induced by the almost linear variation of the band edges of each layer in the heterostructures, when vdW heterostructures is subjected to small electric fields the variation becomes nonlinear. This can be attributed to the band offsets-induced interlayer charge transfer and resulted intraand inter-layer Coulomb interactions. Our work, thus offers new insight into the mechanism of the nonlinear GSE in vdW heterostructures, which is important for the applications of vdW heterostructures on nanoelectronic devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [2] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, (03) : 106 - 111
  • [3] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [4] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [5] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [6] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [7] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    [J]. Nature Reviews Materials, 1
  • [8] Photovoltaics in Van der Waals Heterostructures
    Furchi, Marco M.
    Zechmeister, Armin A.
    Hoeller, Florian
    Wachter, Stefan
    Pospischil, Andreas
    Mueller, Thomas
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (01) : 106 - 116
  • [9] Frustrated van der Waals heterostructures
    Tawfik, Sherif Abdulkader
    [J]. Nanoscale, 2024, 16 (44) : 20484 - 20488
  • [10] Polaritons in Van der Waals Heterostructures
    Guo, Xiangdong
    Lyu, Wei
    Chen, Tinghan
    Luo, Yang
    Wu, Chenchen
    Yang, Bei
    Sun, Zhipei
    de Abajo, F. Javier Garcia
    Yang, Xiaoxia
    Dai, Qing
    [J]. ADVANCED MATERIALS, 2023, 35 (17)