Evaluation of Pseudo-Random Number Generation on GPU Cards

被引:7
|
作者
Askar, Tair [1 ,2 ]
Shukirgaliyev, Bekdaulet [2 ,3 ,4 ]
Lukac, Martin [5 ]
Abdikamalov, Ernazar [2 ,6 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Nur Sultan 010000, Kazakhstan
[2] Nazarbayev Univ, Energet Cosmos Lab, Nur Sultan 010000, Kazakhstan
[3] Fesenkov Astrophys Inst, Alma Ata 050020, Kazakhstan
[4] Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Dept Solid State Phys & Nonlinear Phys, Alma Ata 050040, Kazakhstan
[5] Nazarbayev Univ, Dept Comp Sci, Nur Sultan 010000, Kazakhstan
[6] Nazarbayev Univ, Dept Phys, Nur Sultan 010000, Kazakhstan
关键词
GPU; PRNG; CUDA; Curand; SIMULATIONS; LIBRARY;
D O I
10.3390/computation9120142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Monte Carlo methods rely on sequences of random numbers to obtain solutions to many problems in science and engineering. In this work, we evaluate the performance of different pseudo-random number generators (PRNGs) of the Curand library on a number of modern Nvidia GPU cards. As a numerical test, we generate pseudo-random number (PRN) sequences and obtain non-uniform distributions using the acceptance-rejection method. We consider GPU, CPU, and hybrid CPU/GPU implementations. For the GPU, we additionally consider two different implementations using the host and device application programming interfaces (API). We study how the performance depends on implementation parameters, including the number of threads per block and the number of blocks per streaming multiprocessor. To achieve the fastest performance, one has to minimize the time consumed by PRNG seed setup and state update. The duration of seed setup time increases with the number of threads, while PRNG state update decreases. Hence, the fastest performance is achieved by the optimal balance of these opposing effects.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] To what extent are multiple pendulum systems viable in pseudo-random number generation?
    Sigit, Matthew
    [J]. arXiv,
  • [42] Maximal length cellular automata in GF(q) and pseudo-random number generation
    Adak, Sumit
    Bhattacharjee, Kamalika
    Das, Sukanta
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (03):
  • [43] High-Performance Pseudo-Random Number Generation on Graphics Processing Units
    Nandapalan, Nimalan
    Brent, Richard P.
    Murray, Lawrence M.
    Rendell, Alistair P.
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2012, 7203 : 609 - 618
  • [44] RECONFIGURABLE LOW POWER ARCHITECTURE FOR FAULT TOLERANT PSEUDO-RANDOM NUMBER GENERATION
    Savic, Nemanja
    Stojcev, Mile
    Nikolic, Tatjana
    Petrovic, Vladimir
    Jovanovic, Goran
    [J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2014, 23 (01)
  • [45] CLASSIFICATION AND REALIZATION OF PSEUDO-RANDOM NUMBER GENERATORS
    MARTIN, CF
    STAMP, M
    [J]. SYSTEMS & CONTROL LETTERS, 1990, 14 (02) : 169 - 175
  • [46] ADDITIVE CONGRUENTIAL PSEUDO-RANDOM NUMBER GENERATORS
    MILLER, JCP
    PRENTICE, MJ
    [J]. COMPUTER JOURNAL, 1968, 11 (03): : 341 - &
  • [47] A Novel Algorithm for Generating Pseudo-Random Number
    Gangyi Hu
    Jin Peng
    Weili Kou
    [J]. International Journal of Computational Intelligence Systems, 2019, 12 : 643 - 648
  • [48] FAST PSEUDO-RANDOM NUMBER GENERATORS FOR COMPUTERS
    PRATT, AR
    [J]. RADIO AND ELECTRONIC ENGINEER, 1970, 40 (02): : 83 - &
  • [49] THE LATTICE STRUCTURE OF PSEUDO-RANDOM NUMBER GENERATORS
    RIPLEY, BD
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 389 (1796): : 197 - 204
  • [50] A PSEUDO-RANDOM NUMBER GENERATOR FOR SYSTEM/360
    LEWIS, PAW
    GOODMAN, AS
    MILLER, JM
    [J]. IBM SYSTEMS JOURNAL, 1969, 8 (02) : 136 - &