Evaluation of Pseudo-Random Number Generation on GPU Cards

被引:7
|
作者
Askar, Tair [1 ,2 ]
Shukirgaliyev, Bekdaulet [2 ,3 ,4 ]
Lukac, Martin [5 ]
Abdikamalov, Ernazar [2 ,6 ]
机构
[1] Nazarbayev Univ, Sch Engn & Digital Sci, Nur Sultan 010000, Kazakhstan
[2] Nazarbayev Univ, Energet Cosmos Lab, Nur Sultan 010000, Kazakhstan
[3] Fesenkov Astrophys Inst, Alma Ata 050020, Kazakhstan
[4] Al Farabi Kazakh Natl Univ, Fac Phys & Technol, Dept Solid State Phys & Nonlinear Phys, Alma Ata 050040, Kazakhstan
[5] Nazarbayev Univ, Dept Comp Sci, Nur Sultan 010000, Kazakhstan
[6] Nazarbayev Univ, Dept Phys, Nur Sultan 010000, Kazakhstan
关键词
GPU; PRNG; CUDA; Curand; SIMULATIONS; LIBRARY;
D O I
10.3390/computation9120142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Monte Carlo methods rely on sequences of random numbers to obtain solutions to many problems in science and engineering. In this work, we evaluate the performance of different pseudo-random number generators (PRNGs) of the Curand library on a number of modern Nvidia GPU cards. As a numerical test, we generate pseudo-random number (PRN) sequences and obtain non-uniform distributions using the acceptance-rejection method. We consider GPU, CPU, and hybrid CPU/GPU implementations. For the GPU, we additionally consider two different implementations using the host and device application programming interfaces (API). We study how the performance depends on implementation parameters, including the number of threads per block and the number of blocks per streaming multiprocessor. To achieve the fastest performance, one has to minimize the time consumed by PRNG seed setup and state update. The duration of seed setup time increases with the number of threads, while PRNG state update decreases. Hence, the fastest performance is achieved by the optimal balance of these opposing effects.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Pseudo-Random Number Generation on GP-GPU
    Passerat-Palmbach, Jonathan
    Mazel, Claude
    Hill, David R. C.
    [J]. 2011 IEEE WORKSHOP ON PRINCIPLES OF ADVANCED AND DISTRIBUTED SIMULATION (PADS), 2011,
  • [2] Accelerating Pseudo-Random Number Generator for MCNP on GPU
    Gong, Chunye
    Liu, Jie
    Chi, Lihua
    Hu, Qingfeng
    Deng, Li
    Gong, Zhenghu
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1335 - +
  • [3] PSEUDO-RANDOM NUMBER GENERATION AND SPACE COMPLEXITY
    FURST, M
    LIPTON, R
    STOCKMEYER, L
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1983, 158 : 171 - 176
  • [4] Efficient parallel pseudo-random number generation
    Tan, CJK
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 309 - 314
  • [5] Pseudo-random number generation using LSTMs
    Young-Seob Jeong
    Kyo-Joong Oh
    Chung-Ki Cho
    Ho-Jin Choi
    [J]. The Journal of Supercomputing, 2020, 76 : 8324 - 8342
  • [6] Pseudo-random number generation using LSTMs
    Jeong, Young-Seob
    Oh, Kyo-Joong
    Cho, Chung-Ki
    Choi, Ho-Jin
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (10): : 8324 - 8342
  • [7] Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices
    Phillips, Carolyn L.
    Anderson, Joshua A.
    Glotzer, Sharon C.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7191 - 7201
  • [8] SOME NEW RESULTS IN PSEUDO-RANDOM NUMBER GENERATION
    VANGELDER, A
    [J]. JOURNAL OF THE ACM, 1967, 14 (04) : 785 - &
  • [9] Evaluation of periodic characteristics of pseudo-random number generator
    Zong, Hui
    Cao, Zining
    Zhao, Jianyang
    Zhu, Yuanzhou
    [J]. DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 317 - 324
  • [10] Pseudo-random number generation for sketch-based estimations
    Rusu, Florin
    Dobra, Alin
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2007, 32 (02):