Weighted principal geodesic analysis for facial gender classification

被引:0
|
作者
Wu, Jing [1 ]
Smith, W. A. P. [1 ]
Hancock, E. R. [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
gender classification; facial surface normals; principal geodesic analysis; weighted principal geodesic analysis; gender discriminating power;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe a weighted principal geodesic analysis (WPGA) method to extract features for gender classification based on 2.5D facial surface normals (needle-maps) which can be extracted from 2D intensity images using shape-from-shading (SFS). By incorporating the weight matrix into principal geodesic analysis (PGA), we control the obtained principal axis to be in the direction of the variance on gender information. Experiments show that using WPGA, the leading eigenvectors encode more gender discriminating power than using PGA, and that gender classification based on leading WPGA parameters is more accurate and stable than based on leading PGA parameters.
引用
下载
收藏
页码:331 / 339
页数:9
相关论文
共 50 条
  • [21] Principal geodesic analysis for the study of nonlinear statistics of shape
    Fletcher, PT
    Lu, CL
    Pizer, SA
    Joshi, S
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (08) : 995 - 1005
  • [22] Optimization over geodesics for exact principal geodesic analysis
    Sommer, S.
    Lauze, F.
    Nielsen, M.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 283 - 313
  • [23] Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
    Pont, Mathieu
    Vidal, Jules
    Tierny, Julien
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (02) : 1573 - 1589
  • [24] Optimization over geodesics for exact principal geodesic analysis
    S. Sommer
    F. Lauze
    M. Nielsen
    Advances in Computational Mathematics, 2014, 40 : 283 - 313
  • [25] Facial expression recognition and gender classification using facial patches
    Dept of Pg Studies, Rajas International Institute for Women, Nagercoil, India
    不详
    Int. Conf. Commun. Syst. Networks, ComNet, 2016, (200-204):
  • [26] Facial expression recognition and gender classification using facial patches
    Anusha, A., V
    Jayasree, J. K.
    Bhaskar, Anusree
    Aneesh, R. P.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMNET), 2016, : 200 - 204
  • [27] Principal Component Analysis for facial animation
    Goudeaux, K
    Chen, TH
    Wang, SW
    Liu, JD
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 1501 - 1504
  • [28] A principal component analysis of facial expressions
    Calder, AJ
    Burton, AM
    Miller, P
    Young, AW
    Akamatsu, S
    VISION RESEARCH, 2001, 41 (09) : 1179 - 1208
  • [29] Gender Classification by Facial Feature Extraction Using Topographic Independent Component Analysis
    Garg, Shivi
    Trivedi, Munesh C.
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS: VOL 2, 2016, 51 : 397 - 409
  • [30] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195