Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index

被引:93
|
作者
Jalalkamali, A. [1 ]
Moradi, M. [2 ]
Moradi, N. [2 ,3 ]
机构
[1] Islamic Azad Univ, Dept Water Engn, Kerman Branch, Kerman, Iran
[2] Islamic Azad Univ Kerman, Kerman, Iran
[3] Islamic Azad Univ Bam, Kerman, Iran
关键词
Drought; Forecasting; SPI; ANFIS; ANN; ARIMAX; SVM; Yazd; ANFIS;
D O I
10.1007/s13762-014-0717-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is among the most important natural disasters influencing different aspects of human life. In recent decades, intelligent techniques have shown to be highly capable of modeling and forecasting nonlinear and dynamic time series. Hence, the present study aimed to forecast drought using and comparing the multilayer perceptron artificial neural network (MLP ANN), adaptive neuro-fuzzy inference systems (ANFIS), support vector machine (SVM) model, and the autoregressive integrated moving average (ARIMAX) multivariate time series. To this end, the precipitation data obtained from the Yazd synoptic station for a 51-year statistic period were used. Moreover, the humidity levels for short-term (3 and 6 months) and long-term (9, 12, 18, and 24 months) periods were calculated using the Standardized Precipitation Index (SPI). Next, based on the results of calculations, the 1961-2002 period was selected as the control group and the 2003-2012 period was selected as the experimental group. In order to forecast the SPI for the t + 1 period, values of SPI, precipitation, and temperature of previous eras were used. Results indicated that in a 9-months period (as the timescale), the ARIMAX model gives SPI values and forecast drought with more precision than the SVM, ANFIS, and MLP models.
引用
收藏
页码:1201 / 1210
页数:10
相关论文
共 50 条
  • [41] Monitoring Agricultural Drought Using the Standardized Effective Precipitation Index
    Ebrahimpour, Meisam
    Rahimi, Jaber
    Nikkhah, Armin
    Bazrafshan, Javad
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2015, 141 (01)
  • [42] DROUGHT ANALYSIS OF SINDH USING STANDARDIZED PRECIPITATION INDEX (SPI)
    Sadiq, N.
    Abbasi, A. A.
    Qureshi, M. S.
    MAUSAM, 2014, 65 (03): : 433 - 437
  • [43] Drought in Nicosia Using Standardized Precipitation Index SPI-n and BMDI Drought Index
    Theophilou, M. K.
    Serghides, D.
    THIRD INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2015), 2015, 9535
  • [44] Drought Analysis Of Erzurum Station By Using Standardized Precipitation Evapotranspiration Index And Aggregated Drought Index
    Topcu, Emre
    Karacor, Fatih
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (02): : 565 - 574
  • [45] The application of Standardized Precipitation Index (SPI) to monitor drought in surface and groundwaters
    Kubicz, Justyna
    10TH CONFERENCE ON INTERDISCIPLINARY PROBLEMS IN ENVIRONMENTAL PROTECTION AND ENGINEERING EKO-DOK 2018, 2018, 44
  • [46] FORECASTING DROUGHT BASED ON THE STANDARDIZED PRECIPITATION INDEX (SPI) IN KUCUK MENDERES BASIN, TURKEY
    Gunacti, Mert Can
    Gul, Gulay Onusluel
    Benzeden, Ertugrul
    Kuzucu, Aysegul
    Cetinkaya, Cem Polat
    Baran, Turkay
    4TH INTERNATIONAL CONFERENCE WATER RESOURCES AND WETLANDS, 2018, : 184 - 189
  • [47] Artificial Intelligence-Based Model for Drought Prediction and Forecasting
    Kaur, Amandeep
    Sood, Sandeep K
    Computer Journal, 2020, 63 (11): : 1704 - 1712
  • [48] Drought forecasting using an aggregated drought index and artificial neural network
    Barua, S.
    Perera, B. J. C.
    Ng, A. W. M.
    Tran, D.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2010, 1 (03) : 193 - 206
  • [49] Artificial Intelligence-Based Model For Drought Prediction and Forecasting
    Kaur, Amandeep
    Sood, Sandeep K.
    COMPUTER JOURNAL, 2020, 63 (11): : 1704 - 1712
  • [50] Application of artificial intelligence models in water quality forecasting
    Yeon, I. S.
    Kim, J. H.
    Jun, K. W.
    ENVIRONMENTAL TECHNOLOGY, 2008, 29 (06) : 625 - 631