STOCHASTIC COMPARISONS OF THE LARGEST CLAIM AMOUNTS FROM TWO SETS OF INTERDEPENDENT HETEROGENEOUS PORTFOLIOS

被引:9
|
作者
Nadeb, Hossein [1 ]
Torabi, Hamzeh [1 ]
Dolati, Ali [1 ]
机构
[1] Yazd Univ, Dept Stat, Yazd, Iran
来源
关键词
copula; lamest claim amount; majorization; stochastic ordering; ORDERS;
D O I
10.7153/mia-2020-23-03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-lambda 1, ..., X-lambda n be continuous and dependent non-negative random variables and Y-i = IpiX lambda i, i = 1, ..., n, where I-p1, ..., I-pn are independent Bernoulli random variables independent of X-lambda i 's, with E[I-pi] = p(i), i = 1, ..., n. In actuarial sciences, Y-i corresponds to the claim amount in a portfolio of risks. In this paper, we compare the largest claim amounts of two sets of interdependent portfolios, in the sense of usual stochastic order, when the variables in one set have the parameters lambda(1), ..., lambda(n) and p(1), ..., p(n) and the variables in the other set have the parameters lambda(1)*, ..., lambda(n)* and p(1)*, ..., p(n)*. For illustration, we apply the results to some important models in actuary.
引用
收藏
页码:35 / 56
页数:22
相关论文
共 42 条