On the Schottky problem for genus-five Jacobians with a vanishing theta-null

被引:0
|
作者
Agostini, Daniele [1 ]
Chua, Lynn [2 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 4, D-04103 Leipzig, Germany
[2] CALTECH, Dept Comp & Math Sci, 1200 E Calif Blvd,MC 305-16, Pasadena, CA 91125 USA
关键词
GAUSS MAP; GEOMETRY; VARIETIES; DIVISOR; THEOREM; CURVES; LOCUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a solution to the weak Schottky problem for genus-five Jacobians with a vanishing theta-null, answering a question of Grushevsky and Salvati Manni. More precisely, we show that if a principally polarized Abelian variety of dimension five has a vanishing theta-null with a quadric tangent cone of rank at most three, then it is in the Jacobian locus, up to extra irreducible components. We employ a degeneration argument, together with a study of the ramification loci for the Gauss map of a theta divisor.
引用
收藏
页码:333 / 350
页数:18
相关论文
共 4 条