Jacobians with a vanishing theta-null in genus 4

被引:13
|
作者
Grushevsky, Samuel [1 ]
Manni, Riccardo Salvati [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1007/s11856-008-0031-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a conjecture of Hershel Farkas [11] that if a 4-dimensional principally polarized abelian variety has a vanishing theta-null, and the Hessian of the theta function at the corresponding 2-torsion point is degenerate, the abelian variety is a Jacobian. We also discuss possible generalizations to higher genera, and an interpretation of this condition as an infinitesimal version of Andreotti and Mayer's local characterization of Jacobians by the dimension of the singular locus of the theta divisor.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条