Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC

被引:18
|
作者
Zhu, Xide [1 ]
Lin, Gui-Hua [2 ]
机构
[1] Yokohama Natl Univ, Fac Business Adm, Hodogaya Ku, 79-4 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[2] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2016年 / 31卷 / 04期
基金
国家教育部科学基金资助;
关键词
nonlinear equations; Levenberg-Marquardt method; MPCC; C-; M-; S-stationarity; superlinear convergence; MATHEMATICAL PROGRAMS; EQUILIBRIUM CONSTRAINTS; LOCAL CONVERGENCE; OPTIMALITY;
D O I
10.1080/10556788.2016.1171863
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we first consider a modified Levenberg-Marquardt method for solving nonlinear equations and show that the method converges superlinearly to a solution of the nonlinear equations under suitable conditions. Then, we reformulate the C-/M-/S-stationarity conditions of mathematical program with complementarity constraints as nonlinear equations so that we may employ the modified Levenberg-Marquardt method to solve these stationarity systems. Preliminary numerical experiments show that the new approach is promising.
引用
收藏
页码:791 / 804
页数:14
相关论文
共 50 条
  • [41] An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations
    Amini, Keyvan
    Rostami, Faramarz
    Caristi, Giuseppe
    [J]. OPTIMIZATION, 2018, 67 (05) : 637 - 650
  • [42] Three-steps modified Levenberg-Marquardt method with a new line search for systems of nonlinear equations
    Amini, Keyvan
    Rostami, Faramarz
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 : 30 - 42
  • [43] Levenberg-Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem
    Vasin, V. V.
    Perestoronina, G. Ya.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (02): : 53 - 61
  • [44] A modified Levenberg–Marquardt method with line search for nonlinear equations
    Liang Chen
    [J]. Computational Optimization and Applications, 2016, 65 : 753 - 779
  • [45] A modified Levenberg–Marquardt method for solving system of nonlinear equations
    Liang Chen
    Yanfang Ma
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 2019 - 2040
  • [46] Modified Levenberg-Marquardt Method for Neural Networks Training
    Suratgar, Amir Abolfazl
    Tavakoli, Mohammad Bagher
    Hoseinabadi, Abbas
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 6, 2005, : 46 - 48
  • [47] A smoothing Levenberg-Marquardt method for nonlinear complementarity problems
    Song, Linsen
    Gao, Yan
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (04) : 1305 - 1321
  • [48] A smoothing Levenberg-Marquardt method for nonlinear complementarity problems
    Linsen Song
    Yan Gao
    [J]. Numerical Algorithms, 2018, 79 : 1305 - 1321
  • [49] ON THE GLOBAL CONVERGENCE OF A PARAMETER-ADJUSTING LEVENBERG-MARQUARDT METHOD
    Qi, Liyan
    Xiao, Xiantao
    Zhang, Liwei
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (01): : 25 - 36
  • [50] A Levenberg-Marquardt algorithm with correction for singular system of nonlinear equations
    Fan, Jinyan
    Zeng, Jinlong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9438 - 9446