Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau

被引:55
|
作者
Wang, Yanji [1 ,2 ]
Shen, Xiangjin [1 ]
Jiang, Ming [1 ]
Tong, Shouzheng [1 ]
Lu, Xianguo [1 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Marsh; Vegetation; Aboveground biomass (AGB); Climate change; Tibetan Plateau; NET PRIMARY PRODUCTIVITY; FOREST BIOMASS; CARBON STORAGE; FIELD-MEASUREMENTS; CHINA; GRASSLANDS; VEGETATION; PRECIPITATION; IMPACTS; ALLOCATION;
D O I
10.1016/j.jag.2021.102385
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The Tibetan Plateau has a large area of marshes which play a crucial part in the global carbon cycle. The vegetation aboveground biomass (AGB) is a critical indicator of carbon storage of marsh ecosystems. Due to the limitations of field investigation, the spatiotemporal variation of AGB and its influencing factors of the Tibetan Plateau marshes remain unclear. By using the normalized difference vegetation index (NDVI), climate and measured AGB data, this study investigated the temporal and spatial variation of marsh AGB and its response to climate change in the Tibetan Plateau during 2000-2019. The results showed a good correlation between AGB and annual maximum NDVI (NDVImax), and the AGB can be accurately estimated from a power function equation between marshes biomass and NDVImax (Y = 343.08 x NDVImax0.7363). Based on the function equation, we found that AGB density increased significantly (4.10 gmiddotC/m(2)/decade) from 2000 to 2019 over the Tibetan Plateau, with an average value of 184.71 gmiddotC/m(2). In terms of climate effects, increased precipitation in July could significantly increase marsh AGB, while precipitation in other months has no significant effect on the marsh AGB in the Tibetan Plateau. This study first found an asymmetric impact of night and day temperature on AGB in the Tibetan Plateau marshes: warming day-time temperature has no-significant effect on marsh AGB, while night-time warming can significantly increase the AGB of marshes. Considering the background of global asymmetric warming in nighttime and daytime, more attention should be paid to the different impacts of day and night temperatures on marsh AGB in the Tibetan Plateau.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Lakes as sentinels of climate change on the Tibetan Plateau
    Zhang, Guoqing
    Duan, Shuiqiang
    ALL EARTH, 2021, 33 (01): : 161 - 165
  • [42] Precipitation Conditions Constrain the Sensitivity of Aboveground Net Primary Productivity in Tibetan Plateau Grasslands to Climate Change
    Zeng, Na
    Ren, Xiaoli
    He, Honglin
    Zhang, Li
    Niu, Zhongen
    REMOTE SENSING, 2023, 15 (10)
  • [43] Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982-2013)
    Zhang, Qiang
    Kong, Dongdong
    Shi, Peijun
    Singh, Vijay P.
    Sun, Peng
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 248 : 408 - 417
  • [44] Human activities alter response of alpine grasslands on Tibetan Plateau to climate change
    Wei, Da
    Zhao, Hui
    Zhang, Jianxin
    Qi, Yahui
    Wang, Xiaodan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 262
  • [45] Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM
    Zhu, Liping
    Lu, Xinmiao
    Wang, Junbo
    Peng, Ping
    Kasper, Thomas
    Daut, Gerhard
    Haberzettl, Torsten
    Frenzel, Peter
    Li, Quan
    Yang, Ruimin
    Schwalb, Antje
    Maeusbacher, Roland
    SCIENTIFIC REPORTS, 2015, 5
  • [46] Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM
    Liping Zhu
    Xinmiao Lü
    Junbo Wang
    Ping Peng
    Thomas Kasper
    Gerhard Daut
    Torsten Haberzettl
    Peter Frenzel
    Quan Li
    Ruimin Yang
    Antje Schwalb
    Roland Mäusbacher
    Scientific Reports, 5
  • [47] Hydrological response to future climate change in a mountainous watershed in the Northeast of Tibetan Plateau
    Chen, Zexia
    Zhu, Rui
    Yin, Zhenliang
    Feng, Qi
    Yang, Linshan
    Wang, Lingge
    Lu, Rui
    Fang, Chunshuang
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 44
  • [48] Response of shallow soil temperature to climate change on the Qinghai-Tibetan Plateau
    Wang, Xiqiang
    Chen, Rensheng
    Han, Chuntan
    Yang, Yong
    Liu, Junfeng
    Liu, Zhangwen
    Guo, Shuhai
    Song, Yaoxuan
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (01) : 1 - 16
  • [49] Lake variations in response to climate change in the Tibetan Plateau in the past 40 years
    Liao, Jingjuan
    Shen, Guozhuang
    Li, Yingkui
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2013, 6 (06) : 534 - 549
  • [50] Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change
    Xuqin Zhao
    Min Luo
    Fanhao Meng
    Chula Sa
    Shanhu Bao
    Yuhai Bao
    Journal of Arid Land, 2024, 16 : 46 - 70