Experimental Analysis of NiTi Alloy during Strain-Controlled Low-Cycle Fatigue

被引:6
|
作者
Lima, Pedro Cunha [1 ,2 ]
Rodrigues, Patricia Freitas [1 ]
Ramos, Ana Sofia [1 ]
da Costa, Jose D. M. [1 ]
Braz Fernandes, Francisco Manuel [3 ]
Vieira, Maria Teresa [1 ]
机构
[1] Univ Coimbra, Dept Mech Engn, CEMMPRE, P-3030790 Coimbra, Portugal
[2] Inst Fed Educ Ciencia & Tecnol Bahia IFBA, BR-40301015 Salvador, BA, Brazil
[3] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Mat Sci Dept, CENIMAT I3N, P-2829516 Caparica, Portugal
关键词
NiTi; shape memory alloy; stress-induced martensite; resistivity; SHAPE-MEMORY ALLOY; PHASE-TRANSFORMATION; STRUCTURAL FATIGUE; DEFORMATION; RESISTANCE; MARTENSITE; WIRES; TEM;
D O I
10.3390/ma14164455
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction between the stress-induced martensitic transformation and resistivity behavior of superelastic NiTi shape memory alloy (SMA) was studied. Strain-controlled low-cycle fatigue up to 6% was monitored by in situ electrical resistivity measurements. The experimental results show that a great motion of martensite fronts results in a significant accumulation of defects, as evidenced by transmission electron microscopy (TEM), before and after the tensile cycles. This gives rise to an overall increase of the resistivity values up to the maximum deformation. Therefore, the research suggests that shape memory alloy wire has great potential as a stress sensor inside bulk materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Effect of Strain Waveform on Low-Cycle Fatigue Properties of Inconel 625 Alloy
    Liu Xueying
    Chen Lijia
    Zhou Ge
    Wang Baosen
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (04) : 1263 - 1269
  • [32] Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy
    Mirza, F. A.
    Wang, K.
    Bhole, S. D.
    Friedman, J.
    Chen, D. L.
    Ni, D. R.
    Xiao, B. L.
    Ma, Z. Y.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 661 : 115 - 125
  • [33] Obtaining a low-cycle fatigue strain criterion
    Borodii M.V.
    Strength of Materials, 2001, 33 (3) : 217 - 223
  • [34] Low-cycle fatigue behavior of ULTIMET® alloy
    Jiang, L
    Brooks, CR
    Liaw, PK
    Dunlap, J
    Rawn, CJ
    Peascoe, RA
    Klarstrom, DL
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (03): : 785 - 796
  • [35] Low-cycle fatigue behavior of ULTIMET® alloy
    L. Jiang
    C. R. Brooks
    P. K. Liaw
    J. Dunlap
    C. J. Rawn
    R. A. Peascoe
    D. L. Klarstrom
    Metallurgical and Materials Transactions A, 2004, 35 : 785 - 796
  • [36] STRAIN-CONTROLLED FATIGUE PROPERTIES OF HIGH-STRENGTH LOW-ALLOY STEELS
    KIM, YH
    FINE, ME
    JOURNAL OF METALS, 1980, 32 (12): : 29 - 29
  • [37] CRACK DEVELOPMENT IN A TITANIUM-ALLOY DURING LOW-CYCLE FATIGUE
    KUDRYAVTSEV, PI
    METAL SCIENCE AND HEAT TREATMENT, 1975, 17 (5-6) : 500 - 501
  • [38] LOW-CYCLE FATIGUE OF A TITANIUM 829 ALLOY
    PLUMBRIDGE, WJ
    STANLEY, M
    INTERNATIONAL JOURNAL OF FATIGUE, 1986, 8 (04) : 209 - 216
  • [39] DIRECT STRAIN-CONTROLLED VARIABLE STRAIN RATE LOW CYCLE FATIGUE TESTING IN SIMULATED PWR WATER
    Seppanen, Tommi
    Alhainen, Jouni
    Arilahti, Esko
    Solin, Jussi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 1A, 2017,
  • [40] Analysis of experimental data on low-cycle fatigue in nonproportional deformation
    Borodii M.V.
    Strength of Materials, 2000, 32 (01) : 7 - 12