Super-resolution of blurred infrared images using the blur parameters identification on the neural network

被引:0
|
作者
Zhang, N [1 ]
Jin, WQ [1 ]
Su, BH [1 ]
机构
[1] Beijing Inst Technol, Sch Informat Sci & Technol, Dept Opt Engn, Beijing 100081, Peoples R China
关键词
infrared; image restoration; super-resolution; neural network; back-propagation; blur parameters; Gaussian blur; Fourier spectrum; knife-edge; MPMAP;
D O I
10.1117/12.573445
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images acquired from an infrared (IR) sensor typically suffer from poor spatial resolution due to the finite size of the lens that makes up the imaging system and the consequent imposition of the underlying diffraction limits. The lost frequency components beyond the diffraction-limited cutoff make the obtained images blur. Currently there are one kind of image processing schemes referred to as super-resolution algorithms available for solving of this problem, including Bayesian analysis methods, set theoretic methods, and Fourier domain techniques. But an estimate of the blur model parameters is essential in these methods. If incorrect blur parameters are chosen then the super-resolution results will be wrong. This work presents an original solution to the blur parameters identification problem in infrared image super-resolution. A back-propagation(BP) neural network is used for the blur parameters identification. In this method, we consider the modulation transfer function (MTF) of an infrared system as a Gaussian type. Mathematical analysis shows that using back-propagation neural network it is possible to identify the parameters of the Gaussian blur. After blur parameters identification, the image can be restored using several kinds of methods. We choose the Poisson-MAP super-resolution algorithm with Markov constraint(MPMAP) as our restoration method. Experimental results demonstrate that the performance of the MPMAP method using the blur parameters identified by our neural network is superior to other blind image restoration methods.
引用
收藏
页码:157 / 162
页数:6
相关论文
共 50 条
  • [31] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network
    Song, Xibin
    Dai, Yuchao
    Qin, Xueying
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 360 - 376
  • [32] Blur identification and image super-resolution reconstruction using an approach similar to variable projection
    Yang, Hao
    Gao, Jianpo
    Wu, Zhenyang
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 (289-292) : 289 - 292
  • [33] Local blur estimation and super-resolution
    Chiang, MC
    Boult, TE
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 821 - 826
  • [34] Accuracy improvement of quantification information using super-resolution with convolutional neural network for microscopy images
    Kang, Mi-Sun
    Cha, Eunju
    Kang, Eunhee
    Ye, Jong Chul
    Her, Nam-Gu
    Oh, Jeong-Woo
    Nam, Do-Hyun
    Kim, Myoung-Hee
    Yang, Sejung
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 58 (58)
  • [35] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [36] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [37] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [38] Blurred Image Blind Super-resolution Network via Kernel Estimation
    Li G.-P.
    Lu Y.
    Wang Z.-J.
    Wu Z.-W.
    Wang S.-Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2109 - 2121
  • [39] Super-resolution reconstruction of remote sensing images based on convolutional neural network
    Tian, Yu
    Jia, Rui-Sheng
    Xu, Shao-Hua
    Hua, Rong
    Deng, Meng-Di
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [40] Lightweight Feedback Convolution Neural Network for Remote Sensing Images Super-Resolution
    Wang, Jin
    Wu, Yiming
    Wang, Liu
    Wang, Lei
    Alfarraj, Osama
    Tolba, Amr
    IEEE ACCESS, 2021, 9 : 15992 - 16003