Structure sensitivity of the low-temperature water-gas shift reaction on Cu-CeO2 catalysts

被引:187
|
作者
Si, Rui [1 ]
Raitano, Joan [2 ]
Yi, Nan [1 ]
Zhang, Lihua [3 ]
Chan, Siu-Wai [2 ]
Flytzani-Stephanopoulos, Maria [1 ]
机构
[1] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[2] Columbia Univ, Dept Mat Sci, New York, NY 10027 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
关键词
Water-gas shift; Copper Cerium oxide; Copper-ceria; Structure sensitivity; Shape effect; FUEL-CELL APPLICATIONS; OXIDE COMPOSITE CATALYSTS; MIXED-OXIDE; AU-CEO2; CATALYSTS; CERIA CATALYSTS; CARBON-MONOXIDE; TOTAL OXIDATION; CO OXIDATION; IN-SITU; COPPER;
D O I
10.1016/j.cattod.2011.09.008
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO2 catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuOx structures exist. We show here that only the strongly bound Cu-[O-x]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuOx clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu2+ ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO2 catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO2, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i. e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 +/- 10 kJ/mol, in a product-free (2% CO-10% H2O) gas mixture. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 50 条
  • [31] Cu/ZrO2 Catalyst for Low-Temperature Water-Gas Shift Reaction: Preparation, Characterization and Performance
    Ruan Chunxiao
    Chen Chongqi
    Zhang Yanjie
    Lin Xingyi
    Zhan Yingying
    Zheng Qi
    CHINESE JOURNAL OF CATALYSIS, 2012, 33 (05) : 842 - 849
  • [32] Nanostructured Au–CeO2 Catalysts for Low-Temperature Water–Gas Shift
    Qi Fu
    Adam Weber
    Maria Flytzani-Stephanopoulos
    Catalysis Letters, 2001, 77 : 87 - 95
  • [34] Atomic-Layered Au Clusters on α-MoC as Catalysts for the Low-Temperature Water-Gas Shift Reaction
    Wu Kai
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (01) : 3 - 4
  • [35] Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction
    Yao, Siyu
    Zhang, Xiao
    Zhou, Wu
    Gao, Rui
    Xu, Wenqian
    Ye, Yifan
    Lin, Lili
    Wen, Xiaodong
    Liu, Ping
    Chen, Bingbing
    Crumlin, Ethan
    Guo, Jinghua
    Zuo, Zhijun
    Li, Weizhen
    Xie, Jinglin
    Lu, Li
    Kiely, Christopher J.
    Gu, Lin
    Shi, Chuan
    Rodriguez, Jose A.
    Ma, Ding
    SCIENCE, 2017, 357 (6349) : 389 - +
  • [36] Activation of carbon-supported platinum catalysts by sodium for the low-temperature water-gas shift reaction
    Zugic, Branko
    Bell, David C.
    Flytzani-Stephanopoulos, Maria
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 144 : 243 - 251
  • [37] Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction
    Deng, Lidan
    Ai, Xin
    Xie, Fengqiong
    Zhou, Guilin
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (08) : 949 - 958
  • [38] The effect of titration time on the catalytic performance of Cu/CeO2 catalysts for water-gas shift reaction
    Na, Hyun-Suk
    Shim, Jae-Oh
    Jang, Won-Jun
    Jeon, Kyung-Won
    Kim, Hak-Min
    Lee, Yeol-Lim
    Lee, Da-We
    Yoo, Seong-Yeun
    Bae, Jong Wook
    Rode, Chandrashekhar V.
    Roh, Hyun-Seog
    CATALYSIS TODAY, 2018, 309 : 83 - 88
  • [39] Gold catalysts for low temperature water-gas shift reaction: Effect of ZrO2 addition to CeO2 support
    Vindigni, Floriana
    Manzoli, Maela
    Tabakova, Tatyana
    Idakiev, Vasko
    Boccuzzi, Flora
    Chiorino, Anna
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 125 : 507 - 515
  • [40] Sour water-gas shift reaction over Pt/CeO2 catalysts
    Liu, Bing
    Goldbach, Andreas
    Xu, Hengyong
    CATALYSIS TODAY, 2011, 171 (01) : 304 - 311