In this paper we survey work being conducted at Imperial College on the use of machine learning to build Systems Biology models of the effects of toxins on biochemical pathways. Several distinct, and complementary modelling techniques are being explored. Firstly, work is being conducted on applying Support-Vector ILP (SVILP) as an accurate means of screening high-toxicity molecules. Secondly, Bayes' networks have been machine-learned to provide causal maps of the effects of toxins on the network of metabolic reactions within cells. The data were derived from a study on the effects of hydrazine toxicity in rats. Although the resultant network can be partly explained in terms of existing KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway descriptions, several of the strong dependencies in the Bayes' network involve metabolite pairs with high separation in KEGG. Thirdly, in a complementary study KEGG pathways are being used as background knowledge for explaining the same data using a model constructed using Abductive ILP, a logic-based machine learning technique. With a binary prediction model (up/down regulation) cross validation results show that even with a restricted number of observed metabolites high predictive accuracy (80-90%) is achieved on unseen metabolite concentrations. Further increases in accuracy are achieved by allowing discovery of general rules from additional literature data on hydrazine inhibition. Ongoing work is aimed at formulating probabilistic logic models which combine the learned Bayes' network and ILP models.
机构:
Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Gilpin, William
Huang, Yitong
论文数: 0引用数: 0
h-index: 0
机构:
Dartmouth Coll, Dept Math, Hanover, NH 03755 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Huang, Yitong
Forger, Daniel B.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USAHarvard Univ, Quantitat Biol Initiat, Cambridge, MA 02138 USA
机构:
Isfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, IranIsfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, Iran
Abedi, Maryam
Marateb, Hamid Reza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Isfahan, Fac Engn, Dept Biomed Engn, Esfahan, Iran
Univ Politecn Cataluna, BarcelonaTech UPC, Biomed Engn Res Ctr, Dept Automat Control, Barcelona, SpainIsfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, Iran
Marateb, Hamid Reza
Mohebian, Mohammad Reza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Saskatchewan, Dept Elect & Comp Engn, Saskatoon, SK, CanadaIsfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, Iran
Mohebian, Mohammad Reza
Aghaee-Bakhtiari, Seyed Hamid
论文数: 0引用数: 0
h-index: 0
机构:
Mashhad Univ Med Sci, Bioinformat Res Grp, Mashhad, Razavi Khorasan, Iran
Mashhad Univ Med Sci, Dept Med Biotechnol & Nanotechnol, Fac Med, Mashhad, Razavi Khorasan, IranIsfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, Iran
Aghaee-Bakhtiari, Seyed Hamid
Nassiri, Seyed Mahdi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran, Dept Clin Pathol, Fac Vet Med, Tehran, IranIsfahan Univ Med Sci, Regenerat Med Res Ctr, Esfahan, Iran