On shared gamma-frailty conditional Markov model for semicompeting risks data
被引:2
|
作者:
Li, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USAIndiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
Li, Jing
[1
]
Zhang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
Univ Nebraska Med Ctr, Coll Publ Hlth, Dept Biostat, Omaha, NE USAIndiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
Zhang, Ying
[1
,2
]
Bakoyannis, Giorgos
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USAIndiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
Bakoyannis, Giorgos
[1
]
Gao, Sujuan
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USAIndiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
Gao, Sujuan
[1
]
机构:
[1] Indiana Univ, Richard M Fairbanks Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
[2] Univ Nebraska Med Ctr, Coll Publ Hlth, Dept Biostat, Omaha, NE USA
Semicompeting risks data are a mixture of competing risks data and progressive state data. This type of data occurs when a nonterminal event is subject to truncation by a well-defined terminal event, but not vice versa. The shared gamma-frailty conditional Markov model (GFCMM) has been used to analyze semicompeting risks data because of its flexibility. There are two versions of this model: the restricted and the unrestricted model. Maximum likelihood estimation methodology has been proposed in the literature. However, we found through numerical experiments that the unrestricted model sometimes yields nonparametrically biased estimation. In this article, we provide a practical guideline for using the GFCMM in the analysis of semicompeting risk data that includes: (a) a score test to assess if the restricted model, which does not exhibit estimation problems, is reasonable under a proportional hazards assumption, and (b) a graphical illustration to justify whether the unrestricted model yields nonparametric estimation with substantial bias for cases where the test provides a statistical significant result against the restricted model. This guideline was applied to the Indianapolis-Ibadan Dementia Project data as an illustration to explore how dementia occurrence changes mortality risk.
机构:
Leiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, NetherlandsLeiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, Netherlands
Fiocco, M.
Putter, H.
论文数: 0引用数: 0
h-index: 0
机构:
Leiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, NetherlandsLeiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, Netherlands
Putter, H.
Van Houwelingen, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Leiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, NetherlandsLeiden Univ, Dept Med Stat & Bioinformat, Med Ctr, NL-2300 RC Leiden, Netherlands
机构:
Univ Leeds, Dept Stat, Leeds, W Yorkshire, EnglandUniv Leeds, Dept Stat, Leeds, W Yorkshire, England
Muli, Annah Mwikali
Gusnanto, Arief
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leeds, Dept Stat, Leeds, W Yorkshire, EnglandUniv Leeds, Dept Stat, Leeds, W Yorkshire, England
Gusnanto, Arief
Houwing-Duistermaat, Jeanine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Leeds, Dept Stat, Leeds, W Yorkshire, England
Alan Turing Inst, London, England
Utrecht Univ Med Ctr, Dept Biostat & Res Support, Utrecht, NetherlandsUniv Leeds, Dept Stat, Leeds, W Yorkshire, England