Commuting Solutions of a Quadratic Matrix Equation for Nilpotent Matrices

被引:11
|
作者
Dong, Qixiang [1 ]
Ding, Jiu [2 ]
Huang, Qianglian [3 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Southern Mississippi, Dept Math, Hattiesburg, MS 39406 USA
[3] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
quadratic matrix equation; nilpotent matrix; Jordan canonical form; Toeplitz matrix; commuting solution;
D O I
10.1142/S1005386718000032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the quadratic matrix equation AXA = XAX with a given nilpotent matrix A, to find all commuting solutions. We first provide a key lemma, and consider the special case that A has only one Jordan block to motivate the idea for the general case. Our main result gives the structure of all the commuting solutions of the equation with an arbitrary nilpotent matrix.
引用
收藏
页码:31 / 44
页数:14
相关论文
共 50 条
  • [21] THE UNILATERAL QUADRATIC MATRIX EQUATION AND PROBLEM OF EIGENSENSITIVITIES OF MATRICES
    Larin, V. B.
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2012, 11 (03) : 337 - 347
  • [22] On the Commuting Solutions to the Yang-Baxter-like Matrix Equation for Identity Matrix Minus Special Rank-two Matrices
    Yin, Hui-Hui
    Wang, Xiang
    Tang, Xiao-Bin
    Chen, Lei
    [J]. FILOMAT, 2018, 32 (13) : 4591 - 4609
  • [23] Nilpotent matrices having a given Jordan type as maximum commuting nilpotent orbit
    Iarrobino, Anthony
    Khatami, Leila
    Van Steirteghem, Bart
    Zhao, Rui
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 546 : 210 - 260
  • [24] Commuting solutions of the Yang-Baxter-like matrix equation for a class of rank-two updated matrices
    Ren, Huan
    Wang, Xiang
    Wang, Teng
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (05) : 1085 - 1098
  • [25] On commuting solutions of the Yana-Baxter-like matrix equation
    Shen, Dongmei
    Wei, Musheng
    Jia, Zhigang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 665 - 696
  • [26] The upper bound for the index of nilpotency for a matrix commuting with a given nilpotent matrix
    Oblak, Polona
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 701 - 711
  • [27] Bound on the Jordan type of a generic nilpotent matrix commuting with a given matrix
    Anthony Iarrobino
    Leila Khatami
    [J]. Journal of Algebraic Combinatorics, 2013, 38 : 947 - 972
  • [28] Bound on the Jordan type of a generic nilpotent matrix commuting with a given matrix
    Iarrobino, Anthony
    Khatami, Leila
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (04) : 947 - 972
  • [29] Solving the Yang-Baxter-like matrix equation for nilpotent matrices of index three
    Zhou, Duanmei
    Ding, Jiu
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (02) : 303 - 315
  • [30] Newton's method for solving a quadratic matrix equation with special coefficient matrices
    Seo, Sang-Hyup
    Seo, Jong Hyun
    Kim, Hyun-Min
    [J]. 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490