Self-Seeded Growth of GaAs Nanowires by Metal-Organic Chemical Vapor Deposition

被引:16
|
作者
Ermez, Sema [1 ]
Jones, Eric J. [1 ]
Crawford, Samuel C. [1 ]
Gradecak, Silvija [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
CATALYST ATOMS; SILICON; EFFICIENCY; HETEROSTRUCTURES; SUPERLATTICES; MECHANISM; DIFFUSION; DIAMETER; EPITAXY;
D O I
10.1021/acs.cgd.5b00131
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-seeded growth of semiconducting nanowires offers significant advantages over foreign metal seeded growth by eliminating seed-associated impurities. However, density and diameter control of self-seeded nanowires has proven Challenging although it is required for integration of nanowires into optoelectronic devices. We report the self-seeded growth of GaAs nanowire arrays on GaAs (111)B, (110), and (111)A substrates by metal organic chemical Vapor deposition. Our approach involves two Steps: the in situ deposition of Ga seed particles and subsequent GaAs nanowire growth. Control of nanowire diameter and array density is achieved :via Ga seed deposition temperature and substrate orientation) increased seed deposition temperatures or changing substrate orientation from (111)A to (110) and (111)B yields reduced areal density and larger nanowire diameters. The density and diameter control approaches could be extended to other self seeded III-V nanowire material systems.
引用
收藏
页码:2768 / 2774
页数:7
相关论文
共 50 条
  • [21] Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition
    Park, Jeung Hun
    Pozuelo, Marta
    Setiawan, Bunga P. D.
    Chung, Choong-Heui
    [J]. NANOSCALE RESEARCH LETTERS, 2016, 11
  • [22] Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition
    Zhang, XT
    Liu, Z
    Leung, YP
    Li, Q
    Hark, SK
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (26) : 5533 - 5535
  • [23] Vapor-liquid-solid growth of III-Nitride nanowires and heterostructures by metal-organic chemical vapor deposition
    Su, J
    Gherasimova, M
    Cui, G
    Han, J
    Lim, S
    Ciuparu, D
    Pfefferle, L
    He, Y
    Nurmikko, AV
    Broadbridge, C
    Lehman, A
    Onuma, T
    Kurimoto, M
    Chichibu, SF
    [J]. GAN, AIN, INN AND THEIR ALLOYS, 2005, 831 : 753 - 758
  • [24] The influence of As and Ga prelayers on the metal-organic chemical vapor deposition of GaAs/Ge
    R. Tyagi
    M. Singh
    M. Thirumavalavan
    T. Srinivasan
    S. K. Agarwal
    [J]. Journal of Electronic Materials, 2002, 31 : 234 - 237
  • [25] The influence of As and Ga prelayers on the metal-organic chemical vapor deposition of GaAs/Ge
    Tyagi, R
    Singh, M
    Thirumavalavan, M
    Srinivasan, T
    Agarwal, SK
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (03) : 234 - 237
  • [26] Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach
    Lee, SK
    Choi, HJ
    Pauzauskie, P
    Yang, PD
    Cho, NK
    Park, HD
    Suh, EK
    Lim, KY
    Lee, HJ
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (03): : 763 - 763
  • [27] Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach
    Lee, SK
    Choi, HJ
    Pauzauskie, P
    Yang, PD
    Cho, NK
    Park, HD
    Suh, EK
    Lim, KY
    Lee, HJ
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2004, 241 (12): : 2775 - 2778
  • [28] Metal-organic chemical vapor deposition of ZnO
    Pan, M
    Fenwick, WE
    Strassburg, M
    Li, N
    Kang, H
    Kane, MH
    Asghar, A
    Gupta, S
    Varatharajan, R
    Nause, J
    El-Zein, N
    Fabiano, P
    Steiner, T
    Ferguson, I
    [J]. JOURNAL OF CRYSTAL GROWTH, 2006, 287 (02) : 688 - 693
  • [29] Metal-organic precursors and chemical vapor deposition
    Valade, L
    Teyssandier, F
    [J]. ACTUALITE CHIMIQUE, 1999, (02): : 14 - 21
  • [30] The growth and doping of Al(As)Sb by metal-organic chemical vapor deposition
    Biefeld, RM
    Allerman, AA
    Kurtz, SR
    [J]. COMPOUND SEMICONDUCTOR ELECTRONICS AND PHOTONICS, 1996, 421 : 33 - 38