InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product

被引:37
|
作者
Xie, Shiyu [1 ,3 ]
Zhou, Xinxin [1 ]
Zhang, Shiyong [1 ]
Thomson, David J. [2 ]
Chen, Xia [2 ]
Reed, Graham T. [2 ]
Ng, Jo Shien [1 ]
Tan, Chee Hing [1 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S3 7HQ, S Yorkshire, England
[2] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[3] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales
来源
OPTICS EXPRESS | 2016年 / 24卷 / 21期
基金
英国工程与自然科学研究理事会;
关键词
TEMPERATURE-DEPENDENCE; PERFORMANCE; BREAKDOWN;
D O I
10.1364/OE.24.024242
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Increasing reliance on the Internet places greater and greater demands for highspeed optical communication systems. Increasing their data transfer rate allows more data to be transferred over existing links. With optical receivers being essential to all optical links, bandwidth performance of key components in receivers, such as avalanche photodiodes (APDs), must be improved. The APDs rely on In0.53Ga0.47As (grown lattice-matched to InP substrates) to efficiently absorb and detect the optical signals with 1310 or 1550 nm wavelength, the optimal wavelengths of operation for these optical links. Thus developing InP-compatible APDs with high gain-bandwidth product (GBP) is important to the overall effort of increasing optical links' data transfer rate. Here we demonstrate a novel InGaAs/AlGaAsSb APD, grown on an InP substrate, with a GBP of 424 GHz, the highest value reported for InP-compatible APDs, which is clearly applicable to future optical communication systems at or above 10 Gb/s. The data reported in this article are available from the figshare digital repository.
引用
收藏
页码:24242 / 24247
页数:6
相关论文
共 50 条
  • [31] Resonant Si/Ge avalanche photodiode with an ultrahigh gain bandwidth product
    Bowers, John E.
    Dai, Daoxin
    Zaoui, W. S.
    Kang, Yimin
    Morse, Mike
    [J]. 2010 IEEE PHOTONICS SOCIETY WINTER TOPICALS MEETING SERIES, 2010, : 111 - +
  • [32] Gain-bandwidth product analysis of InAlGaAs-InAlAs superlattice avalanche photodiodes
    Watanabe, I
    Tsuji, M
    Makita, K
    Taguchi, K
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8 (02) : 269 - 271
  • [33] AVALANCHE PHOTODIODES WITH A GAIN-BANDWIDTH PRODUCT OF MORE THAN GHZ-200
    BERCHTOLD, K
    KRUMPHOLZ, O
    SURI, J
    [J]. APPLIED PHYSICS LETTERS, 1975, 26 (10) : 585 - 587
  • [34] Dynamic Analysis of a Si/SiGe-Based Impact Ionization Avalanche Transit Time Photodiode With an Ultrahigh Gain-Bandwidth Product
    Shi, J. -W.
    Kuo, F. M.
    Hong, F. -C.
    Wu, Y. -S.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2009, 30 (11) : 1164 - 1166
  • [35] Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product
    Kang, Yimin
    Liu, Han-Din
    Morse, Mike
    Paniccia, Mario J.
    Zadka, Moshe
    Litski, Stas
    Sarid, Gadi
    Pauchard, Alexandre
    Kuo, Ying-Hao
    Chen, Hui-Wen
    Zaoui, Wissem Sfar
    Bowers, John E.
    Beling, Andreas
    McIntosh, Dion C.
    Zheng, Xiaoguang
    Campbell, Joe C.
    [J]. NATURE PHOTONICS, 2009, 3 (01) : 59 - 63
  • [36] Gain-bandwidth characteristics of thin avalanche photodiodes
    Hayat, MM
    Kwon, OH
    Pan, Y
    Sotirelis, P
    Campbell, JC
    Saleh, BEA
    Teich, MC
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (05) : 770 - 781
  • [37] ACTIVE FILTERS AND GAIN-BANDWIDTH PRODUCT
    FAULKNER, EA
    GRIMBLEBY, JB
    [J]. ELECTRONICS LETTERS, 1970, 6 (17) : 549 - +
  • [38] Insight into the gain-bandwidth product of amplifiers
    Hayatleh, K
    Hart, BL
    Lidgey, FJ
    [J]. ELECTRONICS WORLD, 2005, 111 (1833): : 24 - 28
  • [39] A NEW LOOK AT GAIN-BANDWIDTH PRODUCT
    WILSON, B
    [J]. ELECTRONICS & WIRELESS WORLD, 1987, 93 (1618): : 834 - 836
  • [40] Analysis of the effect of an electric-field profile on the gain-bandwidth product of avalanche photodetectors
    Wu, WS
    Hawkins, AR
    Bowers, JE
    [J]. OPTICS LETTERS, 1997, 22 (15) : 1183 - 1185