Overlarge sets of resolvable idempotent quasigroups

被引:1
|
作者
Chang, Yanxun [1 ]
Lo Faro, Giovanni [2 ]
Tripodi, Antoinette [2 ]
Zhou, Junling [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Messina, Dept Math, I-98100 Messina, Italy
关键词
Pairwise balanced design; Overlarge set; Idempotent; Quasigroup; Orthogonal; Transversal; STEINER TRIPLE-SYSTEMS;
D O I
10.1016/j.disc.2012.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An idempotent quasigroup (X, o) of order u is called resolvable (denoted by RIQ(nu)) if the set of nu(nu - 1) non-idempotent 3-vectors {(a, b, a o b) : a, b is an element of X, a not equal b} can be partitioned into nu - 1 disjoint transversals. An overlarge set of idempotent quasigroups of order nu, briefly by OLIQ(v), is a collection of nu + 1 IQ(nu)s, with all the nonidempotent 3-vectors partitioning all those on a (nu - 1)-set. An OLRIQ(nu) is an OLIQ(nu) with each member IQ( nu) being resolvable. In this paper, it is established that there exists an OLRIQ(nu) for any positive integer nu >= 3, except for nu = 6, and except possibly for nu is an element of {10, 11, 14, 18, 19. 23, 26, 30. 51}. An OLIQ degrees (nu) is another type of restricted OLIQ(nu) in which each member IQ(nu) has an idempotent orthogonal mate. It is shown that an OUT( v) exists for any positive integer v >= 4, except for nu = 6, and except possibly for nu is an element of {14, 15, 19, 23, 26, 27, 30). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1461 / 1467
页数:7
相关论文
共 50 条
  • [11] Further Results on Large Sets of Resolvable Idempotent Latin Squares
    Zhou, Junling
    Chang, Yanxun
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (09) : 399 - 407
  • [12] Investigating the Existence of Large Sets of Idempotent Quasigroups via Satisfiability Testing
    Huang, Pei
    Ma, Feifei
    Ge, Cunjing
    Zhang, Jian
    Zhang, Hantao
    AUTOMATED REASONING, IJCAR 2018, 2018, 10900 : 354 - 369
  • [13] The Structure of Idempotent Translatable Quasigroups
    Wieslaw A. Dudek
    Robert A. R. Monzo
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1603 - 1621
  • [14] VARIETIES OF IDEMPOTENT MEDIAL QUASIGROUPS
    CSAKANY, B
    MEGYESI, L
    ACTA SCIENTIARUM MATHEMATICARUM, 1975, 37 (1-2): : 17 - 23
  • [15] The Structure of Idempotent Translatable Quasigroups
    Dudek, Wieslaw A.
    Monzo, Robert A. R.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1603 - 1621
  • [16] Overlarge sets and partial geometries
    Mathon R.
    Street A.P.
    Journal of Geometry, 1997, 60 (1-2) : 85 - 104
  • [17] Large Sets and Overlarge Sets of Triangle-Decomposition
    Zi-hong Tian
    Qing-de Kang
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 123 - 132
  • [18] Large Sets and Overlarge Sets of Triangle-Decomposition
    Zi-hong Tian Qing-de Kang Institute of Mathematics
    ActaMathematicaeApplicataeSinica, 2007, (01) : 123 - 132
  • [19] A tripling construction for overlarge sets of KTS
    Yuan, Landang
    Kang, Qingde
    DISCRETE MATHEMATICS, 2009, 309 (04) : 975 - 981
  • [20] On determinability of idempotent medial commutative quasigroups by their endomorphism semigroups
    Leibak, Alar
    Puusemp, Peeter
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2011, 60 (02) : 81 - 87