Deep Learning-based Intrusion Detection for IoT Networks

被引:118
|
作者
Ge, Mengmeng [1 ]
Fu, Xiping [2 ]
Syed, Naeem [3 ]
Baig, Zubair [1 ]
Teo, Gideon [4 ]
Robles-Kelly, Antonio [1 ]
机构
[1] Deakin Univ, Sch Informat Technol, Geelong, Vic, Australia
[2] Telstra Network Serv NZ Ltd, Christchurch, New Zealand
[3] Edith Cowan Univ, Sch Sci, Joondalup, WA, Australia
[4] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
关键词
Internet of Things; Intrusion Detection; Feed-Forward Neural Networks; Denial of Service Attacks;
D O I
10.1109/PRDC47002.2019.00056
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Internet of Things (IoT) has an immense potential for a plethora of applications ranging from healthcare automation to defence networks and the power grid. The security of an IoT network is essentially paramount to the security of the underlying computing and communication infrastructure. However, due to constrained resources and limited computational capabilities, IoT networks are prone to various attacks. Thus, safeguarding the IoT network from adversarial attacks is of vital importance and can be realised through planning and deployment of effective security controls; one such control being an intrusion detection system. In this paper, we present a novel intrusion detection scheme for IoT networks that classifies traffic flow through the application of deep learning concepts. We adopt a newly published IoT dataset and generate generic features from the field information in packet level. We develop a feed-forward neural networks model for binary and multi-class classification including denial of service, distributed denial of service, reconnaissance and information theft attacks against IoT devices. Results obtained through the evaluation of the proposed scheme via the processed dataset illustrate a high classification accuracy.
引用
收藏
页码:256 / 265
页数:10
相关论文
共 50 条
  • [21] Feature engineering and deep learning-based intrusion detection framework for securing edge IoT
    Muneeba Nasir
    Abdul Rehman Javed
    Muhammad Adnan Tariq
    Muhammad Asim
    Thar Baker
    The Journal of Supercomputing, 2022, 78 : 8852 - 8866
  • [22] A comprehensive survey on deep learning-based intrusion detection systems in Internet of Things (IoT)
    Al-Haija, Qasem Abu
    Droos, Ayat
    EXPERT SYSTEMS, 2025, 42 (02)
  • [23] IoT security with Deep Learning-based Intrusion Detection Systems: A systematic literature review
    Idrissi, Idriss
    Azizi, Mostafa
    Moussaoui, Omar
    2020 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS), 2020,
  • [24] DL-IDS: a deep learning-based intrusion detection framework for securing IoT
    Otoum, Yazan
    Liu, Dandan
    Nayak, Amiya
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (03)
  • [25] Deep Learning-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review
    Al-Shurbaji, Tamara
    Anbar, Mohammed
    Manickam, Selvakumar
    Hasbullah, Iznan H.
    Alfriehat, Nadia
    Alabsi, Basim Ahmad
    Alzighaibi, Ahmad Reda
    Hashim, Hasan
    IEEE ACCESS, 2025, 13 : 11792 - 11822
  • [26] Feature engineering and deep learning-based intrusion detection framework for securing edge IoT
    Nasir, Muneeba
    Javed, Abdul Rehman
    Tariq, Muhammad Adnan
    Asim, Muhammad
    Baker, Thar
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 8852 - 8866
  • [27] A Hybrid Deep Learning Approach for Intrusion Detection in IoT Networks
    Emec, Murat
    Ozcanhan, Mehmet Hilal
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2022, 22 (01) : 3 - 12
  • [28] Intrusion Detection in IoT Networks Using Deep Learning Algorithm
    Susilo, Bambang
    Sari, Riri Fitri
    INFORMATION, 2020, 11 (05)
  • [29] A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
    Naveed, Muhammad
    Arif, Fahim
    Usman, Syed Muhammad
    Anwar, Aamir
    Hadjouni, Myriam
    Elmannai, Hela
    Hussain, Saddam
    Ullah, Syed Sajid
    Umar, Fazlullah
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [30] Deep Learning in IoT Intrusion Detection
    Stefanos Tsimenidis
    Thomas Lagkas
    Konstantinos Rantos
    Journal of Network and Systems Management, 2022, 30