Distributed Primal-Dual Methods for Online Constrained Optimization

被引:0
|
作者
Lee, Soomin [1 ]
Zavlanos, Michael M. [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
CONVEX-OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a decentralized primal-dual method for online distributed optimization involving global constraints. We employ a consensus-based framework and exploit the decomposability of the constraints in dual domain. At each stage, each agent commits to an adaptive decision pertaining only to the past and locally available information, and incurs a new cost function reflecting the change in the environment. We show that the algorithm achieves a regret of order O (root T) at any node with the time horizon T, in scenarios when the underlying communication topology is time-varying and jointly-connected.
引用
收藏
页码:7171 / 7176
页数:6
相关论文
共 50 条
  • [31] Accelerated primal-dual proximal block coordinate updating methods for constrained convex optimization
    Xu, Yangyang
    Zhang, Shuzhong
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (01) : 91 - 128
  • [32] A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization
    Xinlei Yi
    Shengjun Zhang
    Tao Yang
    Tianyou Chai
    Karl Henrik Johansson
    IEEE/CAA Journal of Automatica Sinica, 2022, (05) : 812 - 833
  • [33] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    Xin He
    Rong Hu
    Ya-Ping Fang
    Numerical Algorithms, 2022, 90 : 1669 - 1690
  • [34] Inertial accelerated primal-dual methods for linear equality constrained convex optimization problems
    He, Xin
    Hu, Rong
    Fang, Ya-Ping
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1669 - 1690
  • [35] Can Primal Methods Outperform Primal-Dual Methods in Decentralized Dynamic Optimization?
    Yuan, Kun
    Xu, Wei
    Ling, Qing
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4466 - 4480
  • [36] Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimization
    Yamashita, H
    Yabe, H
    MATHEMATICAL PROGRAMMING, 1996, 75 (03) : 377 - 397
  • [37] On the Comparison between Primal and Primal-dual Methods in Decentralized Dynamic Optimization
    Xu, Wei
    Yuan, Kun
    Yin, Wotao
    Ling, Qing
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1501 - 1505
  • [38] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Jin, Lingzi
    Wang, Xiao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 143 - 180
  • [39] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Lingzi Jin
    Xiao Wang
    Computational Optimization and Applications, 2022, 83 : 143 - 180
  • [40] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504