Limit sets as examples in noncommutative geometry

被引:8
|
作者
Lott, J [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
K-THEORY | 2005年 / 34卷 / 04期
关键词
D O I
10.1007/s10977-005-3101-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fundamental group of a hyperbolic manifold acts on the limit set, giving rise to a cross-product C*-algebra. We construct nontrivial K-cycles for the cross-product algebra, thereby extending some results of Connes and Sullivan to higher dimensions. We also show how the Patterson-Sullivan measure on the limit set can be interpreted as a center-valued KMS state.
引用
收藏
页码:283 / 326
页数:44
相关论文
共 50 条
  • [21] On curvature in noncommutative geometry
    DuboisViolette, M
    Madore, J
    Masson, T
    Mourad, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) : 4089 - 4102
  • [22] On noncommutative geometry of orbifolds
    Harju, Antti J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
  • [23] GRAVITY IN NONCOMMUTATIVE GEOMETRY
    CHAMSEDDINE, AH
    FELDER, G
    FROHLICH, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) : 205 - 217
  • [24] Singularities and noncommutative geometry
    Brasselet, JP
    NEW DEVELOPMENTS IN SINGULARITY THEORY, 2001, 21 : 135 - 155
  • [25] NONCOMMUTATIVE GEOMETRY AND REALITY
    CONNES, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) : 6194 - 6231
  • [26] GEOMETRY GOES NONCOMMUTATIVE
    JONES, JDS
    NATURE, 1987, 329 (6136) : 201 - 202
  • [27] Noncommutative geometry and cosmology
    Barbosa, GD
    Pinto-Neto, N
    PHYSICAL REVIEW D, 2004, 70 (10): : 103512 - 1
  • [28] The geometry of noncommutative symmetries
    Paschke, M
    Sitarz, A
    ACTA PHYSICA POLONICA B, 2000, 31 (09): : 1897 - 1911
  • [29] Noncommutative double geometry
    Kodzoman, Toni
    Lescano, Eric
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [30] Noncommutative geometry as a functor
    Nikolaev, Igor V.
    OPERATOR STRUCTURES AND DYNAMICAL SYSTEMS, 2009, 503 : 151 - 157