Illness-death model: statistical perspective and differential equations

被引:8
|
作者
Brinks, Ralph [1 ]
Hoyer, Annika [2 ]
机构
[1] Univ Hosp Duesseldorf, Hiller Res Unit Rheumatol, Dusseldorf, Germany
[2] German Diabet Ctr, Inst Epidemiol & Biometry, Dusseldorf, Germany
关键词
Fix-Neyman competing risks model; Illness-death model; Multistate models; Non-parametric estimation of transition rates; Incidence; Prevalence; Markov processes; Kolmogorov Differential Equations; AGE-SPECIFIC INCIDENCE; PREVALENCE; DISEASES;
D O I
10.1007/s10985-018-9419-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.
引用
下载
收藏
页码:743 / 754
页数:12
相关论文
共 50 条
  • [31] Nonparametric estimation of the probability of illness in the illness-death model under cross-sectional sampling
    Mandel, M.
    Fluss, R.
    BIOMETRIKA, 2009, 96 (04) : 861 - 872
  • [32] Methods for testing the Markov condition in the illness-death model: a comparative study
    Rodriguez-Girondo, Mar
    de Una-Alvarez, Jacobo
    STATISTICS IN MEDICINE, 2016, 35 (20) : 3549 - 3562
  • [33] Nonparametric estimation of transition probabilities in a non-Markov illness-death model
    Meira-Machado, Luis
    de Una-Alvarez, Jacobo
    Cadarso-Suarez, Carmen
    LIFETIME DATA ANALYSIS, 2006, 12 (03) : 325 - 344
  • [34] THE ILLNESS-DEATH MODEL FOR ESTIMATING THE IMPACT OF RISK FACTORS ON THE RISKS OF DEMENTIA AND DEATH IN ELDERLY COHORTS
    Leffondre, K.
    Joly, P.
    Helmer, C.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 : S143 - S143
  • [35] Nonparametric estimation of quality adjusted lifetime distribution in a simple illness-death model
    Pradhan, Biswabrata
    Dewanji, Anup
    Goswami, Alok
    STATISTICS, 2013, 47 (05) : 1030 - 1046
  • [36] Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model
    Suresh, Krithika
    Taylor, Jeremy M. G.
    Spratt, Daniel E.
    Daignault, Stephanie
    Tsodikov, Alexander
    BIOMETRICAL JOURNAL, 2017, 59 (06) : 1277 - 1300
  • [37] An accelerated failure time regression model for illness-death data: A frailty approach
    Kats, Lea
    Gorfine, Malka
    BIOMETRICS, 2023, 79 (04) : 3066 - 3081
  • [38] Lexis Diagram and Illness-Death Model: Simulating Populations in Chronic Disease Epidemiology
    Brinks, Ralph
    Landwehr, Sandra
    Fischer-Betz, Rebecca
    Schneider, Matthias
    Giani, Guido
    PLOS ONE, 2014, 9 (09):
  • [39] Estimation of Transition Probabilities for the Illness-Death Model: Package TP.idm
    Balboa, Vanesa
    de Una-Alvarez, Jacobo
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (10): : 1 - 19
  • [40] Direct modeling of regression effects for transition probabilities in the progressive illness-death model
    Azarang, Leyla
    Scheike, Thomas
    de Una-Alvarez, Jacobo
    STATISTICS IN MEDICINE, 2017, 36 (12) : 1964 - 1976