Nonlinear localized flat-band modes with spin-orbit coupling

被引:33
|
作者
Gligoric, G. [1 ]
Maluckov, A. [1 ]
Hadzievski, Lj. [1 ]
Flach, Sergej [2 ,3 ]
Malomed, Boris A. [4 ,5 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade 11001, Serbia
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon, South Korea
[3] Massey Univ, Ctr Theoret Chem & Phys, New Zealand Inst Adv Study, Auckland, New Zealand
[4] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] ITMO Univ, Lab Nonlinear Opt Informat, St Petersburg 197101, Russia
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.94.144302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the system's band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum localized states in photonic flat-band lattices
    Rojas-Rojas, S.
    Morales-Inostroza, L.
    Vicencio, R. A.
    Delgado, A.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [32] Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    Sinova, Jairo
    Lee, Hyun-Woo
    Stiles, M. D.
    PHYSICAL REVIEW B, 2017, 96 (10)
  • [33] Partial nonseparability of spin-orbit modes
    Lamego, V. S.
    Braga, D. G.
    Oliveira, L. S.
    Balthazar, W. F.
    Huguenin, J. A. O.
    JOURNAL OF OPTICS, 2023, 25 (03)
  • [34] Spin-orbit coupling in the band structure of monolayer WSe2
    Le, Duy
    Barinov, Alexei
    Preciado, Edwin
    Isarraraz, Miguel
    Tanabe, Iori
    Komesu, Takashi
    Troha, Conrad
    Bartels, Ludwig
    Rahman, Talat S.
    Dowben, Peter A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (18)
  • [35] Spin current in spin-orbit coupling systems
    Hu, JP
    Bernevig, BA
    Wu, CJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (31-32): : 5991 - 6000
  • [36] Spin Pumping in the Presence of Spin-Orbit Coupling
    Chen, Kai
    Zhang, Shufeng
    PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [37] Symmetry breaking of localized discrete matter waves induced by spin-orbit coupling
    Salerno, M.
    Abdullaev, F. Kh.
    PHYSICS LETTERS A, 2015, 379 (37) : 2252 - 2256
  • [38] Large Band Gap in a Quantum Spin Hall Insulator with Weak Spin-Orbit Coupling
    Wu, Zhigang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2018, 12 (08):
  • [39] Nonlinear nonreciprocal transport in antiferromagnets free from spin-orbit coupling
    Hayami, Satoru
    Yatsushiro, Megumi
    PHYSICAL REVIEW B, 2022, 106 (01)
  • [40] Effective lattice model for the collective modes in a Fermi liquid with spin-orbit coupling
    Kumar, Abhishek
    Maslov, Dmitrii L.
    PHYSICAL REVIEW B, 2017, 95 (16)