A modified Tikhonov regularization method

被引:21
|
作者
Yang, Xiao-Juan [1 ,2 ]
Wang, Li [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Taizhou Coll, Sch Math Sci, Taizhou 225300, Peoples R China
基金
中国国家自然科学基金;
关键词
Tikhonov regularization; TSVD; Discrepancy principle; GCV; Arnoldi-based hybrid method; ILL-POSED PROBLEMS; NUMERICAL-SOLUTION; LINEAR-SYSTEMS; GMRES;
D O I
10.1016/j.cam.2015.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tikhonov regularization and truncated singular value decomposition (TSVD) are two elementary techniques for solving a least squares problem from a linear discrete ill-posed problem. Based on these two techniques, a modified regularization method is proposed, which is applied to an Arnoldi-based hybrid method. Theoretical analysis and numerical examples are presented to illustrate the effectiveness of the method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:180 / 192
页数:13
相关论文
共 50 条
  • [11] A new Tikhonov regularization method
    Fuhry, Martin
    Reichel, Lothar
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (03) : 433 - 445
  • [12] The Tikhonov regularization method in elastoplasticity
    Azikri de Deus, Hilbeth P.
    Avila S., Claudio R., Jr.
    Belo, Ivan Moura
    Beck, Andre T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 4687 - 4707
  • [13] Extrapolation of Tikhonov Regularization Method
    Haemarik, U.
    Palm, R.
    Raus, T.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (01) : 55 - 68
  • [14] A new Tikhonov regularization method
    Martin Fuhry
    Lothar Reichel
    [J]. Numerical Algorithms, 2012, 59 : 433 - 445
  • [15] Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation
    Qin, H. H.
    Wen, D. W.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 617 - 628
  • [16] Image Reconstruction Algorithm for EMT based on Modified Tikhonov Regularization Method
    Hao, Jianna
    Chen, Guang
    Cao, Zhang
    Yin, Wuliang
    Zhao, Qian
    [J]. 2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2507 - 2510
  • [17] THE TIKHONOV REGULARIZATION METHOD IN ELASTOPLASTICITY
    Azikri de Deus, Hilbeth P.
    Avila da Silva, Claudio R., Jr.
    Belo, Ivan M.
    Costa, Joao Carlos A., Jr.
    [J]. COMPUTATIONAL PLASTICITY XI: FUNDAMENTALS AND APPLICATIONS, 2011, : 932 - 943
  • [18] A discretizing Tikhonov regularization method via modified parameter choice rules
    Zhang, Rong
    Xie, Feiping
    Luo, Xingjun
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (04): : 859 - 873
  • [19] A MODIFIED TIKHONOV REGULARIZATION FOR STABLE ANALYTIC CONTINUATION
    Fu, Chu-Li
    Deng, Zhi-Liang
    Feng, Xiao-Li
    Dou, Fang-Fang
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2982 - 3000
  • [20] MODIFIED TIKHONOV REGULARIZATION FOR IDENTIFYING SEVERAL SOURCES
    Elvetun, Ole Loseth
    Nielsen, Bjorn Fredrik
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (06) : 740 - 757