A binary neural k-nearest neighbour technique

被引:15
|
作者
Hodge, VJ [1 ]
Austin, J [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
binary neural network; correlation matrix memory; k-nearest neighbour; parabolic kernel;
D O I
10.1007/s10115-004-0191-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
K-Nearest Neighbour (k-NN) is a widely used technique for classifying and clustering data. K-NN is effective but is often criticised for its polynomial run-time growth as k-NN calculates the distance to every other record in the data set for each record in turn. This paper evaluates a novel k-NN classifier with linear growth and faster run-time built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and real-valued data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations.
引用
收藏
页码:276 / 291
页数:16
相关论文
共 50 条
  • [1] A binary neural k-nearest neighbour technique
    Victoria J. Hodge
    Jim Austin
    [J]. Knowledge and Information Systems, 2005, 8 : 276 - 291
  • [2] An assessment of three variance estimators for the k-nearest neighbour technique
    Magnussen, Steen
    [J]. SILVA FENNICA, 2013, 47 (01)
  • [3] Balanced k-nearest neighbour imputation
    Hasler, Caren
    Tille, Yves
    [J]. STATISTICS, 2016, 50 (06) : 1310 - 1331
  • [4] k-Nearest Neighbour Classifiers - A Tutorial
    Cunningham, Padraig
    Delany, Sarah Jane
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (06)
  • [5] A stacking weighted k-Nearest neighbour with thresholding
    Rastin, Niloofar
    Taheri, Mohammad
    Jahromi, Mansoor Zolghadri
    [J]. INFORMATION SCIENCES, 2021, 571 : 605 - 622
  • [6] Median strings for k-nearest neighbour classification
    Martínez-Hinarejos, CD
    Juan, A
    Casacuberta, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 173 - 181
  • [7] Exact bagging with k-nearest neighbour classifiers
    Caprile, B
    Merler, S
    Furlanello, C
    Jurman, G
    [J]. MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2004, 3077 : 72 - 81
  • [8] Improved AURA k-Nearest Neighbour approach
    Weeks, M
    Hodge, V
    O'Keefe, S
    Austin, J
    Lees, K
    [J]. ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 663 - 670
  • [9] Small components in k-nearest neighbour graphs
    Walters, Mark
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2037 - 2047
  • [10] K-nearest neighbour technique for the effective prediction of refrigeration parameter compatible for automobile
    [J]. Perundyurai Thangavel, Saravanakumar (ptsaravanakumarmech@gmail.com), 1600, Serbian Society of Heat Transfer Engineers (24):