Improved AURA k-Nearest Neighbour approach

被引:0
|
作者
Weeks, M [1 ]
Hodge, V [1 ]
O'Keefe, S [1 ]
Austin, J [1 ]
Lees, K [1 ]
机构
[1] Univ York, Dept Comp Sci, Adv Comp Architecture Grp, York YO10 5DD, N Yorkshire, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The k-Nearest Neighbour (kNN) approach is a widely-used technique for pattern classification. Ranked distance measurements to a known sample set determine the classification of unknown samples. Though effective, kNN, like most classification methods does not scale well with increased sample size. This is due to their being a relationship between the unknown query and every other sample in the data space. In order to make this operation scalable, we apply AURA to the kNN problem. AURA is a highly-scalable associative-memory based binary neural-network intended for high-speed approximate search and match operations on large unstructured datasets. Previous work has seen AURA methods applied to this problem as a scalable, but approximate kNN classifier. This paper continues this work by using AURA in conjunction with kernel-based input vectors, in order to create a fast scalable kNN classifier, whilst improving recall accuracy to levels similar to standard kNN implementations.
引用
收藏
页码:663 / 670
页数:8
相关论文
共 50 条
  • [1] An improved k-nearest neighbour method to diagnose breast cancer
    Li, Qingbo
    Li, Wenjie
    Zhang, Jialin
    Xu, Zhi
    [J]. ANALYST, 2018, 143 (12) : 2807 - 2811
  • [2] Balanced k-nearest neighbour imputation
    Hasler, Caren
    Tille, Yves
    [J]. STATISTICS, 2016, 50 (06) : 1310 - 1331
  • [3] k-Nearest Neighbour Classifiers - A Tutorial
    Cunningham, Padraig
    Delany, Sarah Jane
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (06)
  • [4] Improving the k-Nearest Neighbour Rule by an Evolutionary Voting Approach
    Garcia-Gutierrez, Jorge
    Mateos-Garcia, Daniel
    Riquelme-Santos, Jose C.
    [J]. HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, HAIS 2014, 2014, 8480 : 296 - 305
  • [5] A stacking weighted k-Nearest neighbour with thresholding
    Rastin, Niloofar
    Taheri, Mohammad
    Jahromi, Mansoor Zolghadri
    [J]. INFORMATION SCIENCES, 2021, 571 : 605 - 622
  • [6] A binary neural k-nearest neighbour technique
    Victoria J. Hodge
    Jim Austin
    [J]. Knowledge and Information Systems, 2005, 8 : 276 - 291
  • [7] Median strings for k-nearest neighbour classification
    Martínez-Hinarejos, CD
    Juan, A
    Casacuberta, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 173 - 181
  • [8] Exact bagging with k-nearest neighbour classifiers
    Caprile, B
    Merler, S
    Furlanello, C
    Jurman, G
    [J]. MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2004, 3077 : 72 - 81
  • [9] Small components in k-nearest neighbour graphs
    Walters, Mark
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) : 2037 - 2047
  • [10] A binary neural k-nearest neighbour technique
    Hodge, VJ
    Austin, J
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2005, 8 (03) : 276 - 291