Deep generative adversarial networks for infrared image enhancement

被引:2
|
作者
Guei, Axel-Christian [1 ]
Akhloufi, Moulay A. [1 ]
机构
[1] Univ Moncton, Dept Comp Sci, Percept Robot & Intelligent Machines Res Grp PRIM, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, Canada
关键词
Infrared imaging; Infrared faces; Deep Generative Adversarial Networks; Super-resolution; Image enhancement;
D O I
10.1117/12.2304875
中图分类号
O414.1 [热力学];
学科分类号
摘要
Extracting face images at a distance, in the crowd, or with a lower resolution infrared camera leads to a poor-quality face image that is barely distinguishable. In this work, we present a Deep Convolutional Generative Adversarial Networks (DCGAN) for infrared face image enhancement. The proposed algorithm is used to build a super-resolution face image from its lower resolution counterpart. The resulting images are evaluated in term of qualitative and quantitative metrics on infrared face datasets (NIR and LWIR). The proposed algorithm performs well and preserves important details of the face. The analysis of the resulting images show that the proposed framework is promising and can help improve the performance of image super-resolution generation and enhancement in the infrared spectrum.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [41] Generative Adversarial Networks in Medical Image Processing
    Gong, Meiqin
    Chen, Siyu
    Chen, Qingyuan
    Zeng, Yuanqi
    Zhang, Yongqing
    CURRENT PHARMACEUTICAL DESIGN, 2021, 27 (15) : 1856 - 1868
  • [42] Deep Feature Similarity for Generative Adversarial Networks
    Hou, Xianxu
    Sun, Ke
    Qiu, Guoping
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 115 - 119
  • [43] Supervised deep convolutional generative adversarial networks
    Ocal, Abdurrahman
    Ozbakir, Lale
    NEUROCOMPUTING, 2021, 449 : 389 - 398
  • [44] Modified generative adversarial networks for image classification
    Zhao, Zhongtang
    Li, Ruixian
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (06) : 1899 - 1906
  • [45] Generative Adversarial Networks in Retinal Image Classification
    Mercaldo, Francesco
    Brunese, Luca
    Martinelli, Fabio
    Santone, Antonella
    Cesarelli, Mario
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [46] Image Inpainting Using Generative Adversarial Networks
    Luo H.-L.
    Ao Y.
    Yuan P.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (10): : 1891 - 1898
  • [47] Generative Adversarial Networks for Hyperspectral Image Classification
    Zhu, Lin
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5046 - 5063
  • [48] Binary Generative Adversarial Networks for Image Retrieval
    Song, Jingkuan
    He, Tao
    Gao, Lianli
    Xu, Xing
    Hanjalic, Alan
    Shen, Heng Tao
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 394 - 401
  • [49] Photoacoustic image synthesis with generative adversarial networks
    Schellenberg, Melanie
    Groehl, Janek
    Dreher, Kris K.
    Noelke, Jan-Hinrich
    Holzwarth, Niklas
    Tizabi, Minu D.
    Seitel, Alexander
    Maier-Hein, Lena
    PHOTOACOUSTICS, 2022, 28
  • [50] Boundless: Generative Adversarial Networks for Image Extension
    Teterwak, Piotr
    Sarna, Aaron
    Krishnan, Dilip
    Maschinot, Aaron
    Belanger, David
    Liu, Ce
    Freeman, William T.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10520 - 10529