Machine Learning Techniques for Estimating the Quality of Transmission of Lightpaths

被引:0
|
作者
Tremblay, Christine [1 ]
Aladin, Sandra [1 ]
机构
[1] Ecole Technol Super, Elect Engn Dept, Network Technol Lab, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Communications technology; optical fiber networks; WDM networks; machine learning; supervised learning; support vector machines; cognitive systems; AWGN; quality of transmission;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss the use of machine learning (ML) techniques for estimating the quality of transmission (QoT) of lightpaths in coherent uncompensated WDM links and show the potential benefits of cognitive QoT estimation tools through a comparative performance analysis of ML-based classifiers using synthetic BER data.
引用
收藏
页码:237 / 238
页数:2
相关论文
共 50 条
  • [21] Cognitive Tool for Estimating the QoT of New Lightpaths
    Aladin, Sandra
    Tremblay, Christine
    2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,
  • [22] Estimating Intelligence Quotient Using Stylometry and Machine Learning Techniques: A Review
    Adebayo, Glory O.
    Yampolskiy, Roman V.
    BIG DATA MINING AND ANALYTICS, 2022, 5 (03) : 163 - 191
  • [23] Modulation Format Identification and Transmission Quality Monitoring for Link Establishment in Optical Network Using Machine Learning Techniques
    Hong, Jie
    Chen, Long
    Zhu, Jiao
    Zhou, Wenhai
    Li, Bo
    Fu, Yongfeng
    Wang, Long
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [24] The Glass of Machine Learning for Quality of Transmission Estimation Is Half Full
    Lonardi, Matteo
    Pesic, Jelena
    Zami, Thierry
    Seve, Emmanuel
    Rossi, Nicola
    2022 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2022,
  • [25] Machine Learning Techniques to Predict Voltage Unbalance in a Power Transmission System
    Boyd, Jonathan D.
    Reising, Donald R.
    Murphy, Anthony M.
    Kuhlers, Justin D.
    McAmis, C. Michael
    Rossman, James B.
    IEEE OPEN JOURNAL OF INDUSTRY APPLICATIONS, 2024, 5 : 86 - 93
  • [26] Machine Learning Algorithms for Prediction of the Quality of Transmission in Optical Networks
    Kozdrowski, Stanislaw
    Cichosz, Pawel
    Paziewski, Piotr
    Sujecki, Slawomir
    ENTROPY, 2021, 23 (01) : 1 - 18
  • [27] Deep learning techniques for quality of transmission estimation in optical networks
    Sahu, Shakrajit
    Clement, J. Christopher
    Optics Communications, 2025, 574
  • [28] Estimating the initial fracture energy of concrete using various machine learning techniques
    Albaijan, Ibrahim
    Mahmoodzadeh, Arsalan
    Mohammed, Adil Hussein
    Mohammadi, Mokhtar
    Gutub, Sohaib
    Alsalami, Omar Mutab
    Ibrahim, Hawkar Hashim
    Alashker, Yasser
    ENGINEERING FRACTURE MECHANICS, 2024, 295
  • [29] Estimating the number of receiving nodes in 802.11 networks via machine learning techniques
    Del Testa, Davide
    Danieletto, Matteo
    Di Nunzio, Giorgio Maria
    Zorzi, Michele
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [30] Machine Learning Techniques for Estimating Soil Moisture from Smartphone Captured Images
    Hossain, Muhammad Riaz Hasib
    Kabir, Muhammad Ashad
    AGRICULTURE-BASEL, 2023, 13 (03):