Machine Learning Techniques for Estimating the Quality of Transmission of Lightpaths

被引:0
|
作者
Tremblay, Christine [1 ]
Aladin, Sandra [1 ]
机构
[1] Ecole Technol Super, Elect Engn Dept, Network Technol Lab, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Communications technology; optical fiber networks; WDM networks; machine learning; supervised learning; support vector machines; cognitive systems; AWGN; quality of transmission;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss the use of machine learning (ML) techniques for estimating the quality of transmission (QoT) of lightpaths in coherent uncompensated WDM links and show the potential benefits of cognitive QoT estimation tools through a comparative performance analysis of ML-based classifiers using synthetic BER data.
引用
收藏
页码:237 / 238
页数:2
相关论文
共 50 条
  • [1] Machine-Learning Method for Quality of Transmission Prediction of Unestablished Lightpaths
    Rottondi, Cristina
    Barletta, Luca
    Giusti, Alessandro
    Tornatore, Massimo
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (02) : A286 - A297
  • [2] Machine Learning Models for Estimating Quality of Transmission in DWDM Networks
    Morais, Rui Manuel
    Pedro, Joao
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2018, 10 (10) : D84 - D99
  • [3] Machine learning techniques for quality of transmission estimation in optical networks
    Pointurier, Yvan
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2021, 13 (04) : B60 - B71
  • [4] Estimating Quality of Transmission in a Live Production Network using Machine Learning
    Mueller, Jasper
    Fehenberger, Tobias
    Patri, Sai Kireet
    Kaeval, Kaida
    Griesser, Helmut
    Tikas, Marko
    Elbers, Joerg-Peter
    [J]. 2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [5] Supervised Machine Learning Techniques for Quality of Transmission Assessment in Optical Networks
    Mata, Javier
    de Miguel, Ignacio
    Duran, Ramon J.
    Carlos Aguado, Juan
    Merayo, Noemi
    Ruiz, Lidia
    Fernandez, Patricia
    Lorenzo, Ruben M.
    Abril, Evaristo J.
    Tomkos, Ioannis
    [J]. 2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [6] Machine learning regression for QoT estimation of unestablished lightpaths
    Ibrahimi, Memedhe
    Abdollahi, Hatef
    Rottondi, Cristina
    Giusti, Alessandro
    Ferrari, Alessio
    Curri, Vittorio
    Tornatore, Massimo
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2021, 13 (04) : B92 - B101
  • [7] Estimating QoT of Unestablished Lightpaths
    Sartzetakis, I.
    Christodoulopoulos, K.
    Tsekrekos, C. P.
    Syvridis, D.
    Varvarigos, E.
    [J]. 2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,
  • [8] Convolutional neural network for quality of transmission prediction of unestablished lightpaths
    Usmani, Fehmida
    Khan, Ihtesham
    Masood, Muhammad Umar
    Ahmad, Arsalan
    Shahzad, Muhammad
    Curri, Vittorio
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (10) : 2461 - 2469
  • [9] Accurate Quality of Transmission Estimation With Machine Learning
    Sartzetakis, Ippokratis
    Christodoulopoulos, Konstantinos
    Varvarigos, Emmanouel
    [J]. JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2019, 11 (03) : 140 - 150
  • [10] Performance Prediction of Established Lightpaths Using Machine Learning and Field Data
    Tremblay, Christine
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,