Visualization and Quantification of MicroRNA in a Single Cell Using Atomic Force Microscopy

被引:43
|
作者
Koo, Hyunseo [1 ]
Park, Ikbum [2 ]
Lee, Yoonhee [1 ]
Kim, Hyun Jin [3 ]
Jung, Jung Hoon [3 ]
Lee, Joo Han [3 ]
Kim, Youngkyu [1 ]
Kim, Joung-Hun [3 ]
Park, Joon Won [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Chem, 77 Cheongam Ro, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol, Div Integrat Biosci & Biotechnol, 77 Cheongam Ro, Pohang 37673, South Korea
[3] Pohang Univ Sci & Technol, Dept Life Sci, 77 Cheongam Ro, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
INTRACELLULAR MICRORNA; MESSENGER-RNA; NUCLEIC-ACID; IN-SITU; CANCER; EXPRESSION; DNA; RECOGNITION; PROBE; QUANTITATION;
D O I
10.1021/jacs.6b05048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MicroRNAs, (miRNAs) play critical roles in controlling various cellular processes, and the expression levels of individual miRNAs can be 'considerably altered in pathological conditions such as cancer. Accurate quantification of miRNA at the single-cell level will lead to a better understanding of.miRNA function. Here, we present a direct and sensitive method for miRNA detection using atomic force microscopy (AFM). A hybrid binding domain (HBD)-tethered tip enabled mature miRNAs, but not premature miRNAs, to be located individually:on an adhesion force map. By scanning Several sections of a micrometer-sized DNA spot, we were able to quantify the copy number of miR-134 in a single neuron and demonstrate that the expression was increased upon cell activation. Moreover, we visualized individual miR-134s on fixed neurons after membrane removal and observed 2-4 miR-134s in the area of 1.0 x 1.0 mu m(2) of soma. The number increased to 8-14 in stimulated neurons, and this change matches the ensemble-averaged increase in copy number. These findings indicate that miRNAs can be reliably quantified at the single cell level with AFM and that their distribution can be mapped at nanometric lateral resolution without modification or amplification. Furthermore, the analysis of miRNAs, mRNAs, and proteins in the same sample or region by scanning sequentially with different AFM tips would let us :accurately understand the post-transcriptional regulation of biological processes.
引用
收藏
页码:11664 / 11671
页数:8
相关论文
共 50 条
  • [41] Advances in atomic force microscopy for single-cell analysis
    Li, Mi
    Xi, Ning
    Wang, Yuechao
    Liu, Lianqing
    NANO RESEARCH, 2019, 12 (04) : 703 - 718
  • [42] Atomic force microscopy-based single cell mechanics
    Lulevich, Valentin
    Zink, Tiffany
    Chen, Huan-Yuan
    Liu, Fu-tong
    Liu, Gang-yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [43] Time fluctuation of single cell rheology by atomic force microscopy
    Cai, P.
    Mizutani, Y.
    Tsuchiya, M.
    Okajima, T.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [44] Advances in atomic force microscopy for single-cell analysis
    Mi Li
    Ning Xi
    Yuechao Wang
    Lianqing Liu
    Nano Research, 2019, 12 : 703 - 718
  • [45] Characterization of Cell Membrane using Atomic Force Microscopy
    Liu, Lin
    Wei, Yuhui
    Wang, Kaizhe
    Wang, Lihua
    Hu, Jun
    Li, Bin
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 430A - 430A
  • [46] Visualization of single N-methyl-D-aspartate receptor with atomic force microscopy
    Shinozaki, Youichi
    Sumitomo, Koji
    Torimitsu, Keiichi
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2010, 112 : 233P - 233P
  • [47] Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth
    Yip, C. M.
    Ward, M. D.
    Biophysical Journal, 71 (02):
  • [48] Atomic force microscopy of insulin single crystals: Direct visualization of molecules and crystal growth
    Yip, CM
    Ward, MD
    BIOPHYSICAL JOURNAL, 1996, 71 (02) : 1071 - 1078
  • [49] A Switchable Surface Enables Visualization of Single DNA Hybridization Events with Atomic Force Microscopy
    Abel, Gary R., Jr.
    Josephs, Eric A.
    Luong, Norman
    Ye, Tao
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (17) : 6399 - 6402
  • [50] Stretching single polysaccharides and proteins using atomic force microscopy
    Marszalek, Piotr E.
    Dufrene, Yves F.
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) : 3523 - 3534