Algebraic and geometric properties of Bethe Ansatz eigenfunctions on a pentagonal magnetic ring

被引:18
|
作者
Milewski, J. [2 ]
Banaszak, G. [3 ]
Lulek, T. [4 ]
Labuz, M. [1 ]
机构
[1] Univ Rzeszow, Inst Phys, PL-35959 Rzeszow, Poland
[2] Poznan Tech Univ, Inst Math, PL-60965 Poznan, Poland
[3] Adam Mickiewicz Univ Poznan, Dept Math & Comp Sci, PL-61614 Poznan, Poland
[4] Adam Mickiewicz Univ Poznan, Fac Phys, PL-61614 Poznan, Poland
关键词
Heisenberg magnet; Galois extensions; Rigged string configurations; CLASSICAL CONFIGURATION-SPACE; RIGGED STRINGS;
D O I
10.1016/j.physb.2010.11.027
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The exact solution of the eigenproblem of the Heisenberg Hamiltonian for the XXX model in the case of a magnetic ring with N=5 nodes is presented in a closed algebraic form. It is demonstrated that the eigenproblem itself is expressible within the extension of the prime field Q of rationals by the primitive fifth root of unity, whereas the associated Bethe parameters, i.e. pseudomomenta, phases of scattering, and spectral parameters, require some finite field extensions, such that the nonlinearity remains algebraic rather than transcendental. Classification of exact Bethe Ansatz eigenstates in terms of rigged string configurations is presented. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:520 / 526
页数:7
相关论文
共 50 条