Hierarchically structured hydrogels utilizing multifunctional assembling peptides for 3D cell culture

被引:36
|
作者
Hilderbrand, Amber M. [1 ]
Ford, Eden M. [1 ]
Guo, Chen [1 ]
Sloppy, Jennifer D. [2 ]
Kloxin, April M. [1 ,2 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, 150 Acad St, Newark, DE 19716 USA
[2] Univ Delaware, Mat Sci & Engn, 201 DuPont Hall, Newark, DE 19716 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
COLLAGEN-MIMETIC PEPTIDE; TRIPLE-HELIX; MECHANICAL-PROPERTIES; BIOMATERIALS; NETWORKS;
D O I
10.1039/c9bm01894h
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Approaches for the creation of soft materials, particularly hydrogels, with hierarchical structure are of interest in a variety of applications owing to their unique properties. In the context of tissue mimics, hydrogels with multiscale structures more accurately capture the complexities of tissues within the body (e.g., fibrous collagen-rich microenvironments). However, cytocompatible fabrication of such materials with hierarchical structures and independent control of mechanical and biochemical properties remains challenging and is needed for probing and directing cell-micro-environment interactions for three-dimensional (3D) cell encapsulation and culture applications. To address this, we have designed innovative multifunctional assembling peptides: these unique peptides contain a core block that mimics the structure of collagen for achieving relevant melting temperatures; 'sticky' ends to promote assembly of long fibrils; and a biocompatible reactive handle that is orthogonal to assembly to allow the formation of desired multiscale structures and their subsequent rapid, light-triggered integration within covalently crosslinked synthetic hydrogels. Nano- to micro-fibrils were observed to form in physiologically-relevant aqueous solutions, where both underlying peptide chemical structure and assembly conditions were observed to impact the resulting fibril sizes. These assembled structures were 'locked' into place and integrated as linkers within cell-degradable, bioactive hydrogels formed with photoinitiated thiol-ene 'click' chemistry. Hydrogel compositions were identified for achieving robust mechanical properties like those of soft tissues while also retaining higher ordered structures after photopolymerization. The utility of these innovative materials for 3D cell culture was demonstrated with human mesenchymal stem cells, where cell morphologies reminiscent of responses to assembled native collagen were observed now with a fully synthetic material. Using a bottom-up approach, a new materials platform has been established that combines the advantageous properties of covalent and assembling chemistries for the creation of synthetic hydrogels with controllable nanostructure, mechanical properties, and biochemical content.
引用
收藏
页码:1256 / 1269
页数:14
相关论文
共 50 条
  • [31] Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice
    Ferdinand Ruedinger
    Antonina Lavrentieva
    Cornelia Blume
    Iliyana Pepelanova
    Thomas Scheper
    Applied Microbiology and Biotechnology, 2015, 99 : 623 - 636
  • [32] Shape-Changing Photodegradable Hydrogels for Dynamic 3D Cell Culture
    Kapyla, Elli
    Delgado, Stephanie M.
    Kasko, Andrea M.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 17885 - 17893
  • [33] Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice
    Ruedinger, Ferdinand
    Lavrentieva, Antonina
    Blume, Cornelia
    Pepelanova, Iliyana
    Scheper, Thomas
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (02) : 623 - 636
  • [34] Shape-changing, photodegradable hydrogels as 3D cell culture environments
    Kapyla, Elli
    Delgado, Stephanie
    Kasko, Andrea
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Designing Hydrogels for 3D Cell Culture Using Dynamic Covalent Crosslinking
    Rizwan, Muhammad
    Baker, Alexander E. G.
    Shoichet, Molly S.
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (12)
  • [36] Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms
    Hai-Yang Wu
    Lei Yang
    Jiang-Shan Tu
    Jie Wang
    Jin-Ge Li
    Hong-Ying Lv
    Xiao-Niu Yang
    Chinese Journal of Polymer Science, 2022, 40 : 38 - 46
  • [37] Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms
    Hai-Yang Wu
    Lei Yang
    Jiang-Shan Tu
    Jie Wang
    Jin-Ge Li
    Hong-Ying Lv
    Xiao-Niu Yang
    Chinese Journal of Polymer Science, 2022, 40 (01) : 38 - 46
  • [38] Glutathione-triggered formation of molecular hydrogels for 3D cell culture
    Lv, Linna
    Liu, Hanxia
    Chen, Xuemei
    Yang, Zhimou
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 108 : 352 - 357
  • [39] Viscoelastic and phototunable GelMA-alginate hydrogels for 3D cell culture
    Tansik, Gulistan
    Stowers, Ryan
    MRS ADVANCES, 2024, 9 (08) : 505 - 511
  • [40] Preparation of Microvasculature-embedding Porous Hydrogels for 3D Cell Culture
    Hori, Aruto
    Watabe, Yuki
    Yajima, Yuya
    Utoh, Rie
    Yamada, Masumi
    Seki, Minoru
    2018 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2018,