High temperature heat capacity of (U, Am) O2±x

被引:15
|
作者
Epifano, E. [1 ]
Benes, O. [2 ]
Valu, O. S. [2 ]
Zappey, J. [2 ]
Lebreton, F. [1 ]
Martin, P. M. [1 ]
Gueneau, C. [3 ]
Konings, R. J. M. [2 ]
机构
[1] CEA, Res Dept Min & Fuel Recycling Proc, Nucl Energy Div, SFMA, BP 17171, F-30207 Bagnols Sur Ceze, France
[2] European Commiss, Joint Res Ctr, POB 2340, D-76125 Karlsruhe, Germany
[3] Univ Paris Saclay, CEA, DEN Serv Corros & Comportement Mat Leur Environm, F-91191 Gif Sur Yvette, France
关键词
URANIUM-DIOXIDE; THERMAL-CONDUCTIVITY; MINOR ACTINIDES; LOCAL-STRUCTURE; DEGREES-K; FABRICATION; IRRADIATION; TRANSMUTATION; ENTHALPY; DIFFUSIVITY;
D O I
10.1016/j.jnucmat.2017.07.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mixed uranium and americium dioxides (U, Am) O-2 +/- x are candidates as possible transmutation targets for generation IV reactors. In this work, the enthalpy increments of this solid solution were measured in the 470-1750 K temperature range by drop calorimetry for Am/(Am + U) ratios equal to 0.32, 0.39, 0.49, 0.58 and 0.68. Then, the heat capacity functions were obtained by derivation of the enthalpy data. The results of this work were compared to the heat capacity and enthalpy functions reported in the literature for the UO2 [1] and AmO2 [2] binary oxides and for the U0.9Am0.1O2 +/- x, U0.8Am0.2O2 +/- x mixed oxides [3]. From the obtained trend, it was found out that an excess contribution to the enthalpy increment appears for T > 1100 K in the compositions with Am/(Am + U) >= 0.4 and a possible explanation attributing this effect to oxygen hypostoichiometry is provided. Finally, to verify the hypothesis, thermodynamic computations based on the CALPHAD method were performed for AmO2 +/- x under air and the results confirmed that the source of the excess contribution is the formation of oxygen vacancies. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [41] High-temperature heat capacity of Sc2Cu2O5
    L. T. Denisova
    Yu. F. Kargin
    L. G. Chumilina
    V. M. Denisov
    S. D. Kirik
    Inorganic Materials, 2014, 50 : 482 - 484
  • [42] High-temperature heat capacity of zirconolite (CaZrTi2O7)
    Poeml, P.
    Geisler, T.
    Konings, R. J. M.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2006, 38 (08): : 1013 - 1016
  • [43] THERMAL-CONDUCTIVITY OF NEAR-STOICHIOMETRIC (U, ND)O2, (U, SM)O2 AND (U, EU)O2 SOLID-SOLUTIONS
    FUKUSHIMA, S
    OHMICHI, T
    MAEDA, A
    HANDA, M
    JOURNAL OF NUCLEAR MATERIALS, 1983, 114 (2-3) : 312 - 325
  • [44] Lattice parameters of (U, Pu, Am, Np)O2-x
    Kato, Masato
    Konashi, Kenji
    JOURNAL OF NUCLEAR MATERIALS, 2009, 385 (01) : 117 - 121
  • [45] Chemical thermodynamic representation of (U, Pu, Am)O2-x
    Osaka, M
    Namekawa, T
    Kurosaki, K
    Yamanaka, S
    JOURNAL OF NUCLEAR MATERIALS, 2005, 344 (1-3) : 230 - 234
  • [46] Fabrication and characterization of (U, Am)O2-x transmutation targets
    Vespa, M.
    Rini, M.
    Spino, J.
    Vitova, T.
    Somers, J.
    JOURNAL OF NUCLEAR MATERIALS, 2012, 421 (1-3) : 80 - 88
  • [47] The high temperature heat capacity of NpO2
    Benes, O.
    Gotcu-Freis, P.
    Schwoerer, F.
    Konings, R. J. M.
    Fanghaenel, Th.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (05): : 651 - 655
  • [48] DEACTIVATION OF O2(A3-SIGMA-U+) BY O2, O, AND AR
    KENNER, RD
    OGRYZLO, EA
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1980, 12 (07) : 501 - 508
  • [49] Synthesis and High-Temperature Heat Capacity of Y2Ge2O7
    L. T. Denisova
    L. A. Irtyugo
    Yu. F. Kargin
    V. V. Beletskii
    V. M. Denisov
    Russian Journal of Inorganic Chemistry, 2018, 63 : 361 - 363
  • [50] Synthesis and high-temperature heat capacity of Gd2Sn2O7
    L. T. Denisova
    L. A. Irtyugo
    Yu. F. Kargin
    V. V. Beletskii
    V. M. Denisov
    Inorganic Materials, 2016, 52 : 584 - 586