New constraints on the thermal and volatile evolution of Mars

被引:11
|
作者
Guest, Alice [1 ]
Smrekar, Suzanne E. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91106 USA
关键词
mars; elastic thickness; thermal evolution; water; relaxation modeling;
D O I
10.1016/j.pepi.2007.06.010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The thermal and volatile evolution of Mars has not been studied from the perspective of consistency with the preservation of the Martian global dichotomy and with estimates of the elastic thickness over time. We use three thermal evolution models for Mars: (1) stagnant lid, (2) early plate tectonics followed by stagnant lid, and (3) mantle overturn, to calculate the amount of relaxation of the dichotomy boundary and elastic thickness values for Noachian- and Hesperian-aged terrains. To explore a wide range of parameters, we evaluate two different initial mantle temperatures, and wet and dry rheologies. Our model results show that the relative water content of the crust has an effect roughly equal to 500 K variations of initial mantle temperature. For all three thermal models, a lower crust viscosity of 10(20)-10(21) Pa s during the first 0.1 Ga after formation of dichotomy would allow for the preservation of the long-wavelength topography of Mars and fitting of the elastic thickness. This viscosity range implies either wet, cold (similar to 1500 K) lower crust, or dry, hot (similar to 2000 K) lower crust in Noachian. Additional constraints are necessary to distinguish between the individual thermal models. For the stagnant lid model, neither the cold, wet crust nor the hot, dry crust agree with timing and amount of the crustal production [Hauck II., S.A., Phillips, R.J., 2002. Thermal and crustal evolution of Mars. J. Geophys. Res. 107, 5052]. Moreover, drying of the crust is required for this model in order to match the admittance elastic thickness at the Hesperian/Amazonian boundary implying remelting of the crust. The hot, dry crust in the early plate tectonics model limits a plate tectonic epoch to only 100-200 Myr and implies dry mantle, which is in disagreement with water found in meteorites. The cold, wet crustal rheology implies the formation of crust during the plate tectonics regime because of the low crustal production during the stagnant lid regime. For mantle overturn, the temperature required for wet crust does not fit the original mantle profile while the dry crust does; however, in order to explain the initially hot thermal profile the crust must have been emplaced very fast. Generally, dry crustal rheology does not fit low elastic values in the Hesperian and implies either that rheology may differ between the southern and northern hemispheres: wet in northern hemisphere and dry in southern hemisphere, or that local weakening occurred. Wet crustal rheology fits well all elastic data except S. Hellas rim, which may be anomalous. Mantle rheology is unconstrained by our modeling and can be either dry or wet. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 50 条
  • [1] New constraints on the thermal and volatile evolution of Mars
    Guest, A.
    Smrekar, S. E.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A334 - A334
  • [2] Constraints on the structure and composition of Mars from thermal evolution models
    Weizman, A
    Prialnik, D
    Podolak, M
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1996, 101 (E1) : 2235 - 2245
  • [3] Geophysical constraints on the evolution of Mars
    Spohn, T
    Acuña, MH
    Breuer, D
    Golombek, M
    Greeley, R
    Halliday, A
    Hauber, E
    Jaumann, R
    Sohl, F
    SPACE SCIENCE REVIEWS, 2001, 96 (1-4) : 231 - 262
  • [4] Geophysical Constraints on the Evolution of Mars
    Tilman Spohn
    Mario H. Acuña
    Doris Breuer
    Matthew Golombek
    Ronald Greeley
    Alexander Halliday
    Ernst Hauber
    Ralf Jaumann
    Frank Sohl
    Space Science Reviews, 2001, 96 : 231 - 262
  • [5] The Mars Atmosphere and Volatile Evolution Mission
    Mitchell, David F.
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [6] The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
    B. M. Jakosky
    R. P. Lin
    J. M. Grebowsky
    J. G. Luhmann
    D. F. Mitchell
    G. Beutelschies
    T. Priser
    M. Acuna
    L. Andersson
    D. Baird
    D. Baker
    R. Bartlett
    M. Benna
    S. Bougher
    D. Brain
    D. Carson
    S. Cauffman
    P. Chamberlin
    J.-Y. Chaufray
    O. Cheatom
    J. Clarke
    J. Connerney
    T. Cravens
    D. Curtis
    G. Delory
    S. Demcak
    A. DeWolfe
    F. Eparvier
    R. Ergun
    A. Eriksson
    J. Espley
    X. Fang
    D. Folta
    J. Fox
    C. Gomez-Rosa
    S. Habenicht
    J. Halekas
    G. Holsclaw
    M. Houghton
    R. Howard
    M. Jarosz
    N. Jedrich
    M. Johnson
    W. Kasprzak
    M. Kelley
    T. King
    M. Lankton
    D. Larson
    F. Leblanc
    F. Lefevre
    Space Science Reviews, 2015, 195 : 3 - 48
  • [7] The MARs Volatile and Ice evolutioN (MARVIN) chamber
    Smith, I. B.
    Isen, J. A.
    Karimova, R.
    Van Brenen, A.
    Mckernan, E.
    Ahmadieh, D.
    ICARUS, 2024, 411
  • [8] The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
    Jakosky, B. M.
    Lin, R. P.
    Grebowsky, J. M.
    Luhmann, J. G.
    Mitchell, D. F.
    Beutelschies, G.
    Priser, T.
    Acuna, M.
    Andersson, L.
    Baird, D.
    Baker, D.
    Bartlett, R.
    Benna, M.
    Bougher, S.
    Brain, D.
    Carson, D.
    Cauffman, S.
    Chamberlin, P.
    Chaufray, J. -Y.
    Cheatom, O.
    Clarke, J.
    Connerney, J.
    Cravens, T.
    Curtis, D.
    Delory, G.
    Demcak, S.
    DeWolfe, A.
    Eparvier, F.
    Ergun, R.
    Eriksson, A.
    Espley, J.
    Fang, X.
    Folta, D.
    Fox, J.
    Gomez-Rosa, C.
    Habenicht, S.
    Halekas, J.
    Holsclaw, G.
    Houghton, M.
    Howard, R.
    Jarosz, M.
    Jedrich, N.
    Johnson, M.
    Kasprzak, W.
    Kelley, M.
    King, T.
    Lankton, M.
    Larson, D.
    Leblanc, F.
    Lefevre, F.
    SPACE SCIENCE REVIEWS, 2015, 195 (1-4) : 3 - 48
  • [9] EVOLUTION AND THERMAL STATE OF MARS
    JOHNSTON, DH
    MCGETCHI.TR
    TOKSOZ, MN
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 346 - 346
  • [10] Thermal evolution of a growing Mars
    Senshu, H
    Kuramoto, K
    Matsui, T
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2002, 107 (E12)