The MARs Volatile and Ice evolutioN (MARVIN) chamber

被引:1
|
作者
Smith, I. B. [1 ,2 ]
Isen, J. A. [1 ]
Karimova, R. [1 ]
Van Brenen, A. [1 ]
Mckernan, E. [1 ]
Ahmadieh, D. [1 ]
机构
[1] York Univ, Toronto, ON M3J 1P3, Canada
[2] Planetary Sci Inst, Lakewood, CO 80401 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Ice; Carbon dioxide; Mars; Seasonal cap; Solar system; CO2; ICE; STATE; DUST;
D O I
10.1016/j.icarus.2023.115941
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Numerous planetary bodies express ices on their surfaces that cannot be replicated in conditions found on Earth. Robotic observations of these materials raise questions that require experimental measurements made in analogue conditions to be answered. Several labs on Earth are capable of recreating some of the conditions found on Mars, but they may be missing some capabilities that are important for the accurate recreation of ices, such as a cold sky, that influence ice behavior. To address this need, we have created the MARs Volatile and Ice evolutioN (MARVIN) Chamber at York University. MARVIN permits careful control of environmental properties with sufficient space to bring equipment into the chamber to make measurements that other labs cannot make. We also have the capacity for upgrades that can replicate conditions on colder planets with lower pressure. Plain language summary: It is impossible to explain some of the observations that robotic probes have made at other planets using knowledge just from natural terrestrial environments or planetary analogue environments on Earth. Many questions must be answered by performing experiments in conditions similar to those found on those planetary bodies. Various labs can approximate some conditions of certain target environments on the Martian surface; however, replicating each of them simultaneously is beyond the reach for many. To address this need, we have created the MARs Volatile and Ice evolutioN (MARVIN) Chamber at York University. Inside of MARVIN, we can better approximate the conditions at the poles of Mars during winter and fit equipment for making measurements that are impossible in smaller chambers. Further, we have capacity to upgrade and eventually replicate conditions on other planets farther from the sun than Mars.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The Mars Atmosphere and Volatile Evolution Mission
    Mitchell, David F.
    [J]. 2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [2] The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
    B. M. Jakosky
    R. P. Lin
    J. M. Grebowsky
    J. G. Luhmann
    D. F. Mitchell
    G. Beutelschies
    T. Priser
    M. Acuna
    L. Andersson
    D. Baird
    D. Baker
    R. Bartlett
    M. Benna
    S. Bougher
    D. Brain
    D. Carson
    S. Cauffman
    P. Chamberlin
    J.-Y. Chaufray
    O. Cheatom
    J. Clarke
    J. Connerney
    T. Cravens
    D. Curtis
    G. Delory
    S. Demcak
    A. DeWolfe
    F. Eparvier
    R. Ergun
    A. Eriksson
    J. Espley
    X. Fang
    D. Folta
    J. Fox
    C. Gomez-Rosa
    S. Habenicht
    J. Halekas
    G. Holsclaw
    M. Houghton
    R. Howard
    M. Jarosz
    N. Jedrich
    M. Johnson
    W. Kasprzak
    M. Kelley
    T. King
    M. Lankton
    D. Larson
    F. Leblanc
    F. Lefevre
    [J]. Space Science Reviews, 2015, 195 : 3 - 48
  • [3] New constraints on the thermal and volatile evolution of Mars
    Guest, Alice
    Smrekar, Suzanne E.
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2007, 164 (3-4) : 161 - 176
  • [4] The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
    Jakosky, B. M.
    Lin, R. P.
    Grebowsky, J. M.
    Luhmann, J. G.
    Mitchell, D. F.
    Beutelschies, G.
    Priser, T.
    Acuna, M.
    Andersson, L.
    Baird, D.
    Baker, D.
    Bartlett, R.
    Benna, M.
    Bougher, S.
    Brain, D.
    Carson, D.
    Cauffman, S.
    Chamberlin, P.
    Chaufray, J. -Y.
    Cheatom, O.
    Clarke, J.
    Connerney, J.
    Cravens, T.
    Curtis, D.
    Delory, G.
    Demcak, S.
    DeWolfe, A.
    Eparvier, F.
    Ergun, R.
    Eriksson, A.
    Espley, J.
    Fang, X.
    Folta, D.
    Fox, J.
    Gomez-Rosa, C.
    Habenicht, S.
    Halekas, J.
    Holsclaw, G.
    Houghton, M.
    Howard, R.
    Jarosz, M.
    Jedrich, N.
    Johnson, M.
    Kasprzak, W.
    Kelley, M.
    King, T.
    Lankton, M.
    Larson, D.
    Leblanc, F.
    Lefevre, F.
    [J]. SPACE SCIENCE REVIEWS, 2015, 195 (1-4) : 3 - 48
  • [5] New constraints on the thermal and volatile evolution of Mars
    Guest, A.
    Smrekar, S. E.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A334 - A334
  • [6] Dynamic and isotopic evolution of ice reservoirs on Mars
    Vos, E.
    Aharonson, O.
    Schorghofer, N.
    [J]. ICARUS, 2019, 324 : 1 - 7
  • [7] Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN
    Leblanc, F.
    Modolo, R.
    Curry, S.
    Luhmann, J.
    Lillis, R.
    Chaufray, J. Y.
    Hara, T.
    McFadden, J.
    Halekas, J.
    Eparvier, F.
    Larson, D.
    Connerney, J.
    Jakosky, B.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (21) : 9135 - 9141
  • [8] MARS ATMOSPHERE AND VOLATILE EVOLUTION (MAVEN) MISSION DESIGN
    Folta, David C.
    [J]. SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 1401 - 1415
  • [9] Preface: The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
    Russell, C. T.
    Jakosky, B. M.
    [J]. SPACE SCIENCE REVIEWS, 2015, 195 (1-4) : 1 - 2
  • [10] Instrument Design for the Mars Atmospheric and Volatile Evolution Mission
    Jedrich, Nicholas
    [J]. 2012 IEEE AEROSPACE CONFERENCE, 2012,