COMPUTING MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA

被引:85
|
作者
Bos, L. [1 ]
De Marchi, S. [2 ]
Sommariva, A. [2 ]
Vianello, M. [2 ]
机构
[1] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[2] Univ Padua, Dept Pure & Appl Math, I-35121 Padua, Italy
关键词
weakly admissible meshes; approximate Fekete points; discrete Leja points; Vandermonde matrices; QR factorization with column pivoting; LU factorization with row pivoting; pluripotential theory; equilibrium measure; POLYNOMIAL INTERPOLATION; APPROXIMATION;
D O I
10.1137/090779024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss and compare two greedy algorithms that compute discrete versions of Fekete-like points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the so-called approximate Fekete points by QR factorization with column pivoting of Vandermonde-like matrices. The second computes discrete Leja points by LU factorization with row pivoting. Moreover, we study the asymptotic distribution of such points when they are extracted from weakly admissible meshes.
引用
收藏
页码:1984 / 1999
页数:16
相关论文
共 50 条
  • [41] Linear Algebra for Computing Grobner Bases of Linear Recursive Multidimensional Sequences
    Berthomieu, Jeremy
    Boyer, Brice
    Faugere, Jean-Charles
    PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15), 2015, : 61 - 68
  • [42] Editorial Preface: “Advances in numerical algebra and scientific computing”
    Zhong-Zhi Bai
    Lothar Reichel
    BIT Numerical Mathematics, 2016, 56 : 395 - 397
  • [43] Editorial Preface: "Advances in numerical algebra and scientific computing"
    Bai, Zhong-Zhi
    Reichel, Lothar
    BIT NUMERICAL MATHEMATICS, 2016, 56 (02) : 395 - 397
  • [44] Research of Scientific Computing in the Engineering Linear Algebra Teaching
    Chen, Fengxin
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 2218 - 2221
  • [45] IMPLEMENTING LINEAR ALGEBRA ALGORITHMS ON A MEIKO COMPUTING SURFACE
    HOFFMANN, W
    POTMA, K
    APPLIED NUMERICAL MATHEMATICS, 1991, 8 (02) : 127 - 148
  • [46] Numerical linear algebra in signal processing applications
    Mastronardi, Nicola
    Golub, Gene H.
    Chandrasekaran, Shivkumar
    Moonen, Marc
    Van Dooren, Paul
    Van Huffel, Sabine
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
  • [47] NUMERICAL LINEAR ALGEBRA FOR NONLINEAR MICROWAVE IMAGING
    Di Benedetto, Fabio
    Estatico, Claudio
    Nagy, James G.
    Pastorino, Matteo
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 33 : 105 - 125
  • [48] An Empirical Evaluation of Sketching for Numerical Linear Algebra
    Dahiya, Yogesh
    Konomis, Dimitris
    Woodruff, David P.
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1292 - 1300
  • [49] SURVEY OF PARALLEL ALGORITHMS IN NUMERICAL LINEAR ALGEBRA
    HELLER, D
    SIAM REVIEW, 1978, 20 (04) : 740 - 777
  • [50] Communication Avoiding and Overlapping for Numerical Linear Algebra
    Georganas, Evangelos
    Gonzalez-Dominguez, Jorge
    Solomonik, Edgar
    Zheng, Yili
    Tourino, Juan
    Yelick, Katherine
    2012 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC), 2012,